A family of compact complex and symplectic Calabi–Yau manifolds that are non-Kähler
Geometry & topology, Tome 22 (2018) no. 4, pp. 2115-2144.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We construct a family of 6–dimensional compact manifolds M(A) which are simultaneously diffeomorphic to complex Calabi–Yau manifolds and symplectic Calabi–Yau manifolds. They have fundamental groups , their odd-degree Betti numbers are even, they satisfy the hard Lefschetz property, and their real homotopy types are formal. However, M(A) × Y is never homotopy equivalent to a compact Kähler manifold for any topological space Y. The main ingredient to show the non-Kählerness is a structure theorem of cohomology jump loci due to the second author.

DOI : 10.2140/gt.2018.22.2115
Classification : 32J27, 53D05
Keywords: Kähler manifolds, Calabi-Yau manifolds

Qin, Lizhen 1 ; Wang, Botong 2

1 Department of Mathematics, Nanjing University, Nanjing, Jiangsu, China
2 Department of Mathematics, University of Wisconsin, Madison, WI, United States
@article{GT_2018_22_4_a3,
     author = {Qin, Lizhen and Wang, Botong},
     title = {A family of compact complex and symplectic {Calabi{\textendash}Yau} manifolds that are {non-K\"ahler}},
     journal = {Geometry & topology},
     pages = {2115--2144},
     publisher = {mathdoc},
     volume = {22},
     number = {4},
     year = {2018},
     doi = {10.2140/gt.2018.22.2115},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.2115/}
}
TY  - JOUR
AU  - Qin, Lizhen
AU  - Wang, Botong
TI  - A family of compact complex and symplectic Calabi–Yau manifolds that are non-Kähler
JO  - Geometry & topology
PY  - 2018
SP  - 2115
EP  - 2144
VL  - 22
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.2115/
DO  - 10.2140/gt.2018.22.2115
ID  - GT_2018_22_4_a3
ER  - 
%0 Journal Article
%A Qin, Lizhen
%A Wang, Botong
%T A family of compact complex and symplectic Calabi–Yau manifolds that are non-Kähler
%J Geometry & topology
%D 2018
%P 2115-2144
%V 22
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.2115/
%R 10.2140/gt.2018.22.2115
%F GT_2018_22_4_a3
Qin, Lizhen; Wang, Botong. A family of compact complex and symplectic Calabi–Yau manifolds that are non-Kähler. Geometry & topology, Tome 22 (2018) no. 4, pp. 2115-2144. doi : 10.2140/gt.2018.22.2115. http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.2115/

[1] A Akhmedov, Symplectic Calabi–Yau 6–manifolds, Adv. Math. 262 (2014) 115 | DOI

[2] J Amorós, M Burger, K Corlette, D Kotschick, D Toledo, Fundamental groups of compact Kähler manifolds, 44, Amer. Math. Soc. (1996) | DOI

[3] D Arapura, Geometry of cohomology support loci for local systems, I, J. Algebraic Geom. 6 (1997) 563

[4] I K Babenko, I A Taĭmanov, On nonformal simply connected symplectic manifolds, Sibirsk. Mat. Zh. 41 (2000) 253

[5] S Baldridge, P Kirk, Coisotropic Luttinger surgery and some new examples of symplectic Calabi–Yau 6–manifolds, Indiana Univ. Math. J. 62 (2013) 1457 | DOI

[6] W Barth, C Peters, A Van De Ven, Compact complex surfaces, 4, Springer (1984) | DOI

[7] F A Bogomolov, On Guan’s examples of simply connected non-Kähler compact complex manifolds, Amer. J. Math. 118 (1996) 1037 | DOI

[8] R Bott, L W Tu, Differential forms in algebraic topology, 82, Springer (1982) | DOI

[9] M Burger, Fundamental groups of Kähler manifolds and geometric group theory, from: "Séminaire Bourbaki, 2009/2010", Astérisque 339, Soc. Math. France (2011) 305

[10] L A Cordero, M Fernández, A Gray, Symplectic manifolds with no Kähler structure, Topology 25 (1986) 375 | DOI

[11] P Deligne, P Griffiths, J Morgan, D Sullivan, Real homotopy theory of Kähler manifolds, Invent. Math. 29 (1975) 245 | DOI

[12] A Dimca, Sheaves in topology, Springer (2004) | DOI

[13] M Fernández, M De León, M Saralegui, A six-dimensional compact symplectic solvmanifold without Kähler structures, Osaka J. Math. 33 (1996) 19

[14] M Fernández, V Muñoz, Formality of Donaldson submanifolds, Math. Z. 250 (2005) 149 | DOI

[15] M Fernández, V Muñoz, An 8–dimensional nonformal, simply connected, symplectic manifold, Ann. of Math. 167 (2008) 1045 | DOI

[16] J Fine, D Panov, Symplectic Calabi–Yau manifolds, minimal surfaces and the hyperbolic geometry of the conifold, J. Differential Geom. 82 (2009) 155 | DOI

[17] J Fine, D Panov, Hyperbolic geometry and non-Kähler manifolds with trivial canonical bundle, Geom. Topol. 14 (2010) 1723 | DOI

[18] R Friedman, On threefolds with trivial canonical bundle, from: "Complex geometry and Lie theory" (editors J A Carlson, C H Clemens, D R Morrison), Proc. Sympos. Pure Math. 53, Amer. Math. Soc. (1991) 103 | DOI

[19] E Goldstein, S Prokushkin, Geometric model for complex non-Kähler manifolds with SU(3) structure, Comm. Math. Phys. 251 (2004) 65 | DOI

[20] R E Gompf, A new construction of symplectic manifolds, Ann. of Math. 142 (1995) 527 | DOI

[21] G Grantcharov, Geometry of compact complex homogeneous spaces with vanishing first Chern class, Adv. Math. 226 (2011) 3136 | DOI

[22] P Griffiths, J Harris, Principles of algebraic geometry, Wiley (1978) | DOI

[23] D Guan, Examples of compact holomorphic symplectic manifolds which are not Kählerian, II, Invent. Math. 121 (1995) 135 | DOI

[24] D Guan, Examples of compact holomorphic symplectic manifolds which are not Kählerian, III, Internat. J. Math. 6 (1995) 709 | DOI

[25] J Gutowski, S Ivanov, G Papadopoulos, Deformations of generalized calibrations and compact non-Kähler manifolds with vanishing first Chern class, Asian J. Math. 7 (2003) 39 | DOI

[26] S Halperin, Lectures on minimal models, 9–10, Soc. Math. France (1983) 261

[27] P Lu, G Tian, The complex structures on connected sums of S3 × S3, from: "Manifolds and geometry" (editors P de Bartolomeis, F Tricerri, E Vesentini), Sympos. Math. XXXVI, Cambridge Univ. Press (1996) 284

[28] G Þ Magnússon, Automorphisms and examples of compact non-Kähler manifolds, preprint (2012)

[29] D Mcduff, Examples of simply-connected symplectic non-Kählerian manifolds, J. Differential Geom. 20 (1984) 267 | DOI

[30] J W Milnor, J D Stasheff, Characteristic classes, , Princeton Univ. Press (1974)

[31] J Morrow, K Kodaira, Complex manifolds, Holt, Rinehart and Winston (1971)

[32] S Papadima, A Suciu, Geometric and algebraic aspects of 1–formality, Bull. Math. Soc. Sci. Math. Roumanie 52(100) (2009) 355

[33] S Papadima, A I Suciu, Bieri–Neumann–Strebel–Renz invariants and homology jumping loci, Proc. Lond. Math. Soc. 100 (2010) 795 | DOI

[34] J Park, Non-complex symplectic 4–manifolds with b2+ = 1, Bull. London Math. Soc. 36 (2004) 231 | DOI

[35] I Smith, R P Thomas, S T Yau, Symplectic conifold transitions, J. Differential Geom. 62 (2002) 209 | DOI

[36] W P Thurston, Some simple examples of symplectic manifolds, Proc. Amer. Math. Soc. 55 (1976) 467 | DOI

[37] R Torres, J Yazinski, Geography of symplectic 4– and 6–manifolds, Topology Proc. 46 (2015) 87

[38] A Tralle, J Oprea, Symplectic manifolds with no Kähler structure, 1661, Springer (1997) | DOI

[39] L S Tseng, S T Yau, Non-Kähler Calabi–Yau manifolds, from: "String-Math 2011" (editors J Block, J Distler, R Donagi, E Sharpe), Proc. Sympos. Pure Math. 85, Amer. Math. Soc. (2012) 241 | DOI

[40] C Voisin, Hodge structures on cohomology algebras and geometry, Math. Ann. 341 (2008) 39 | DOI

[41] B Wang, Torsion points on the cohomology jump loci of compact Kähler manifolds, Math. Res. Lett. 23 (2016) 545 | DOI

[42] G W Whitehead, Elements of homotopy theory, 61, Springer (1978) | DOI

Cité par Sources :