Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We construct a family of –dimensional compact manifolds which are simultaneously diffeomorphic to complex Calabi–Yau manifolds and symplectic Calabi–Yau manifolds. They have fundamental groups , their odd-degree Betti numbers are even, they satisfy the hard Lefschetz property, and their real homotopy types are formal. However, is never homotopy equivalent to a compact Kähler manifold for any topological space . The main ingredient to show the non-Kählerness is a structure theorem of cohomology jump loci due to the second author.
Qin, Lizhen 1 ; Wang, Botong 2
@article{GT_2018_22_4_a3, author = {Qin, Lizhen and Wang, Botong}, title = {A family of compact complex and symplectic {Calabi{\textendash}Yau} manifolds that are {non-K\"ahler}}, journal = {Geometry & topology}, pages = {2115--2144}, publisher = {mathdoc}, volume = {22}, number = {4}, year = {2018}, doi = {10.2140/gt.2018.22.2115}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.2115/} }
TY - JOUR AU - Qin, Lizhen AU - Wang, Botong TI - A family of compact complex and symplectic Calabi–Yau manifolds that are non-Kähler JO - Geometry & topology PY - 2018 SP - 2115 EP - 2144 VL - 22 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.2115/ DO - 10.2140/gt.2018.22.2115 ID - GT_2018_22_4_a3 ER -
%0 Journal Article %A Qin, Lizhen %A Wang, Botong %T A family of compact complex and symplectic Calabi–Yau manifolds that are non-Kähler %J Geometry & topology %D 2018 %P 2115-2144 %V 22 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.2115/ %R 10.2140/gt.2018.22.2115 %F GT_2018_22_4_a3
Qin, Lizhen; Wang, Botong. A family of compact complex and symplectic Calabi–Yau manifolds that are non-Kähler. Geometry & topology, Tome 22 (2018) no. 4, pp. 2115-2144. doi : 10.2140/gt.2018.22.2115. http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.2115/
[1] Symplectic Calabi–Yau 6–manifolds, Adv. Math. 262 (2014) 115 | DOI
,[2] Fundamental groups of compact Kähler manifolds, 44, Amer. Math. Soc. (1996) | DOI
, , , , ,[3] Geometry of cohomology support loci for local systems, I, J. Algebraic Geom. 6 (1997) 563
,[4] On nonformal simply connected symplectic manifolds, Sibirsk. Mat. Zh. 41 (2000) 253
, ,[5] Coisotropic Luttinger surgery and some new examples of symplectic Calabi–Yau 6–manifolds, Indiana Univ. Math. J. 62 (2013) 1457 | DOI
, ,[6] Compact complex surfaces, 4, Springer (1984) | DOI
, , ,[7] On Guan’s examples of simply connected non-Kähler compact complex manifolds, Amer. J. Math. 118 (1996) 1037 | DOI
,[8] Differential forms in algebraic topology, 82, Springer (1982) | DOI
, ,[9] Fundamental groups of Kähler manifolds and geometric group theory, from: "Séminaire Bourbaki, 2009/2010", Astérisque 339, Soc. Math. France (2011) 305
,[10] Symplectic manifolds with no Kähler structure, Topology 25 (1986) 375 | DOI
, , ,[11] Real homotopy theory of Kähler manifolds, Invent. Math. 29 (1975) 245 | DOI
, , , ,[12] Sheaves in topology, Springer (2004) | DOI
,[13] A six-dimensional compact symplectic solvmanifold without Kähler structures, Osaka J. Math. 33 (1996) 19
, , ,[14] Formality of Donaldson submanifolds, Math. Z. 250 (2005) 149 | DOI
, ,[15] An 8–dimensional nonformal, simply connected, symplectic manifold, Ann. of Math. 167 (2008) 1045 | DOI
, ,[16] Symplectic Calabi–Yau manifolds, minimal surfaces and the hyperbolic geometry of the conifold, J. Differential Geom. 82 (2009) 155 | DOI
, ,[17] Hyperbolic geometry and non-Kähler manifolds with trivial canonical bundle, Geom. Topol. 14 (2010) 1723 | DOI
, ,[18] On threefolds with trivial canonical bundle, from: "Complex geometry and Lie theory" (editors J A Carlson, C H Clemens, D R Morrison), Proc. Sympos. Pure Math. 53, Amer. Math. Soc. (1991) 103 | DOI
,[19] Geometric model for complex non-Kähler manifolds with SU(3) structure, Comm. Math. Phys. 251 (2004) 65 | DOI
, ,[20] A new construction of symplectic manifolds, Ann. of Math. 142 (1995) 527 | DOI
,[21] Geometry of compact complex homogeneous spaces with vanishing first Chern class, Adv. Math. 226 (2011) 3136 | DOI
,[22] Principles of algebraic geometry, Wiley (1978) | DOI
, ,[23] Examples of compact holomorphic symplectic manifolds which are not Kählerian, II, Invent. Math. 121 (1995) 135 | DOI
,[24] Examples of compact holomorphic symplectic manifolds which are not Kählerian, III, Internat. J. Math. 6 (1995) 709 | DOI
,[25] Deformations of generalized calibrations and compact non-Kähler manifolds with vanishing first Chern class, Asian J. Math. 7 (2003) 39 | DOI
, , ,[26] Lectures on minimal models, 9–10, Soc. Math. France (1983) 261
,[27] The complex structures on connected sums of S3 × S3, from: "Manifolds and geometry" (editors P de Bartolomeis, F Tricerri, E Vesentini), Sympos. Math. XXXVI, Cambridge Univ. Press (1996) 284
, ,[28] Automorphisms and examples of compact non-Kähler manifolds, preprint (2012)
,[29] Examples of simply-connected symplectic non-Kählerian manifolds, J. Differential Geom. 20 (1984) 267 | DOI
,[30] Characteristic classes, , Princeton Univ. Press (1974)
, ,[31] Complex manifolds, Holt, Rinehart and Winston (1971)
, ,[32] Geometric and algebraic aspects of 1–formality, Bull. Math. Soc. Sci. Math. Roumanie 52(100) (2009) 355
, ,[33] Bieri–Neumann–Strebel–Renz invariants and homology jumping loci, Proc. Lond. Math. Soc. 100 (2010) 795 | DOI
, ,[34] Non-complex symplectic 4–manifolds with b2+ = 1, Bull. London Math. Soc. 36 (2004) 231 | DOI
,[35] Symplectic conifold transitions, J. Differential Geom. 62 (2002) 209 | DOI
, , ,[36] Some simple examples of symplectic manifolds, Proc. Amer. Math. Soc. 55 (1976) 467 | DOI
,[37] Geography of symplectic 4– and 6–manifolds, Topology Proc. 46 (2015) 87
, ,[38] Symplectic manifolds with no Kähler structure, 1661, Springer (1997) | DOI
, ,[39] Non-Kähler Calabi–Yau manifolds, from: "String-Math 2011" (editors J Block, J Distler, R Donagi, E Sharpe), Proc. Sympos. Pure Math. 85, Amer. Math. Soc. (2012) 241 | DOI
, ,[40] Hodge structures on cohomology algebras and geometry, Math. Ann. 341 (2008) 39 | DOI
,[41] Torsion points on the cohomology jump loci of compact Kähler manifolds, Math. Res. Lett. 23 (2016) 545 | DOI
,[42] Elements of homotopy theory, 61, Springer (1978) | DOI
,Cité par Sources :