Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
Let be a closed and oriented –manifold. We define different versions of unfolded Seiberg–Witten Floer spectra for . These invariants generalize Manolescu’s Seiberg–Witten Floer spectrum for rational homology –spheres. We also compute some examples when is a Seifert space.
Khandhawit, Tirasan 1 ; Lin, Jianfeng 2 ; Sasahira, Hirofumi 3
@article{GT_2018_22_4_a2, author = {Khandhawit, Tirasan and Lin, Jianfeng and Sasahira, Hirofumi}, title = {Unfolded {Seiberg{\textendash}Witten} {Floer} spectra, {I} : {Definition} and invariance}, journal = {Geometry & topology}, pages = {2027--2114}, publisher = {mathdoc}, volume = {22}, number = {4}, year = {2018}, doi = {10.2140/gt.2018.22.2027}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.2027/} }
TY - JOUR AU - Khandhawit, Tirasan AU - Lin, Jianfeng AU - Sasahira, Hirofumi TI - Unfolded Seiberg–Witten Floer spectra, I : Definition and invariance JO - Geometry & topology PY - 2018 SP - 2027 EP - 2114 VL - 22 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.2027/ DO - 10.2140/gt.2018.22.2027 ID - GT_2018_22_4_a2 ER -
%0 Journal Article %A Khandhawit, Tirasan %A Lin, Jianfeng %A Sasahira, Hirofumi %T Unfolded Seiberg–Witten Floer spectra, I : Definition and invariance %J Geometry & topology %D 2018 %P 2027-2114 %V 22 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.2027/ %R 10.2140/gt.2018.22.2027 %F GT_2018_22_4_a2
Khandhawit, Tirasan; Lin, Jianfeng; Sasahira, Hirofumi. Unfolded Seiberg–Witten Floer spectra, I : Definition and invariance. Geometry & topology, Tome 22 (2018) no. 4, pp. 2027-2114. doi : 10.2140/gt.2018.22.2027. http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.2027/
[1] Prerequisites (on equivariant stable homotopy) for Carlsson’s lecture, from: "Algebraic topology" (editors I Madsen, B Oliver), Lecture Notes in Math. 1051, Springer (1984) 483 | DOI
,[2] Spectral asymmetry and Riemannian geometry, I, Math. Proc. Cambridge Philos. Soc. 77 (1975) 43 | DOI
, , ,[3] A stable cohomotopy refinement of Seiberg–Witten invariants, II, Invent. Math. 155 (2004) 21 | DOI
,[4] Floer’s infinite-dimensional Morse theory and homotopy theory, from: "The Floer memorial volume" (editors H Hofer, C H Taubes, A Weinstein, E Zehnder), Progr. Math. 133, Birkhäuser (1995) 297 | DOI
, , ,[5] Isolated invariant sets and the Morse index, 38, Amer. Math. Soc. (1978)
,[6] Homotopical dynamics: suspension and duality, Ergodic Theory Dynam. Systems 20 (2000) 379 | DOI
,[7] Transformation groups, 8, de Gruyter (1987) | DOI
,[8] A refinement of the Conley index and an application to the stability of hyperbolic invariant sets, Ergodic Theory Dynam. Systems 7 (1987) 93 | DOI
,[9] An instanton-invariant for 3–manifolds, Comm. Math. Phys. 118 (1988) 215
,[10] Monopole equation and the –conjecture, Math. Res. Lett. 8 (2001) 279 | DOI
,[11] Intersection form of spin 4–manifolds with boundary, preprint (2014)
, ,[12] Algebraic topology, Cambridge Univ. Press (2002)
,[13] Twisted Manolescu–Floer spectra for Seiberg–Witten monopoles, PhD thesis, MIT (2013)
,[14] The unfolded Seiberg–Witten–Floer spectra, II, in preparation
, , ,[15] The unfolded Seiberg–Witten–Floer spectra, III, in preparation
, , ,[16] Periodic Floer pro-spectra from the Seiberg–Witten equations, preprint (2002)
, ,[17] Monopoles and three-manifolds, 10, Cambridge Univ. Press (2007) | DOI
, ,[18] Equivariant stable homotopy theory, 1213, Springer (1986) | DOI
, , , ,[19] The equivalence of two Seiberg–Witten Floer homologies, preprint (2016)
, ,[20] A Morse–Bott approach to monopole Floer homology and the triangulation conjecture, preprint (2014)
,[21] Pin(2)–equivariant KO-theory and intersection forms of spin 4–manifolds, Algebr. Geom. Topol. 15 (2015) 863 | DOI
,[22] Seiberg–Witten–Floer stable homotopy type of three-manifolds with b1 = 0, Geom. Topol. 7 (2003) 889 | DOI
,[23] On the intersection forms of spin four-manifolds with boundary, Math. Ann. 359 (2014) 695 | DOI
,[24] Pin(2)–equivariant Seiberg–Witten Floer homology and the triangulation conjecture, J. Amer. Math. Soc. 29 (2016) 147 | DOI
,[25] Equivariant homotopy and cohomology theory, 91, Amer. Math. Soc. (1996) | DOI
,[26] Seiberg–Witten monopoles on Seifert fibered spaces, Comm. Anal. Geom. 5 (1997) 685 | DOI
, , ,[27] Eta invariants of Dirac operators on circle bundles over Riemann surfaces and virtual dimensions of finite energy Seiberg–Witten moduli spaces, Israel J. Math. 114 (1999) 61 | DOI
,[28] Finite energy Seiberg–Witten moduli spaces on 4–manifolds bounding Seifert fibrations, Comm. Anal. Geom. 8 (2000) 1027 | DOI
,[29] Geometric invariants for Seifert fibred 3–manifolds, Trans. Amer. Math. Soc. 346 (1994) 641 | DOI
,[30] Holomorphic disks and three-manifold invariants: properties and applications, Ann. of Math. 159 (2004) 1159 | DOI
, ,[31] The Conley index for flows preserving generalized symmetries, from: "Conley index theory" (editors K Mischaikow, M Mrozek, P Zgliczyński), Banach Center Publ. 47, Polish Acad. Sci. Inst. Math. (1999) 193
,[32] On the homotopy index for infinite-dimensional semiflows, Trans. Amer. Math. Soc. 269 (1982) 351 | DOI
,[33] Connected simple systems and the Conley index of isolated invariant sets, Trans. Amer. Math. Soc. 291 (1985) 1 | DOI
,[34] Gluing formula for the stable cohomotopy version of Seiberg–Witten invariants along 3–manifolds with b1 > 0, preprint (2014)
,[35] Monopoles and four-manifolds, Math. Res. Lett. 1 (1994) 769 | DOI
,Cité par Sources :