We construct bi-Lipschitz embeddings into Euclidean space for bounded-diameter subsets of manifolds and orbifolds of bounded curvature. The distortion and dimension of such embeddings is bounded by diameter, curvature and dimension alone. We also construct global bi-Lipschitz embeddings for spaces of the form ℝn∕Γ, where Γ is a discrete group acting properly discontinuously and by isometries on ℝn. This generalizes results of Naor and Khot. Our approach is based on analyzing the structure of a bounded-curvature manifold at various scales by specializing methods from collapsing theory to a certain class of model spaces. In the process, we develop tools to prove collapsing theory results using algebraic techniques.
Keywords: bilipschitz, sectional curvature, Alexandrov, collapsing theory
Eriksson-Bique, Sylvester 1
@article{10_2140_gt_2018_22_1961,
author = {Eriksson-Bique, Sylvester},
title = {Quantitative {bi-Lipschitz} embeddings of bounded-curvature manifolds and orbifolds},
journal = {Geometry & topology},
pages = {1961--2026},
year = {2018},
volume = {22},
number = {4},
doi = {10.2140/gt.2018.22.1961},
url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.1961/}
}
TY - JOUR AU - Eriksson-Bique, Sylvester TI - Quantitative bi-Lipschitz embeddings of bounded-curvature manifolds and orbifolds JO - Geometry & topology PY - 2018 SP - 1961 EP - 2026 VL - 22 IS - 4 UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.1961/ DO - 10.2140/gt.2018.22.1961 ID - 10_2140_gt_2018_22_1961 ER -
%0 Journal Article %A Eriksson-Bique, Sylvester %T Quantitative bi-Lipschitz embeddings of bounded-curvature manifolds and orbifolds %J Geometry & topology %D 2018 %P 1961-2026 %V 22 %N 4 %U http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.1961/ %R 10.2140/gt.2018.22.1961 %F 10_2140_gt_2018_22_1961
Eriksson-Bique, Sylvester. Quantitative bi-Lipschitz embeddings of bounded-curvature manifolds and orbifolds. Geometry & topology, Tome 22 (2018) no. 4, pp. 1961-2026. doi: 10.2140/gt.2018.22.1961
[1] , , , Alexandrov geometry, in preparation
[2] , , , Snowflake universality of Wasserstein spaces, preprint (2015)
[3] , Plongements lipschitziens dans Rn, Bull. Soc. Math. France 111 (1983) 429
[4] , Bieberbach’s theorems on space groups and discrete uniform subgroups of Lie groups, Ann. of Math. 71 (1960) 579 | DOI
[5] , , Bi-Lipschitz parameterization of surfaces, Math. Ann. 327 (2003) 135 | DOI
[6] , On Lipschitz embedding of finite metric spaces in Hilbert space, Israel J. Math. 52 (1985) 46 | DOI
[7] , , , A course in metric geometry, 33, Amer. Math. Soc. (2001) | DOI
[8] , , , A D Aleksandrov spaces with curvatures bounded below, Uspekhi Mat. Nauk 47 (1992) 3
[9] , , The Bieberbach case in Gromov’s almost flat manifold theorem, from: "Global differential geometry and global analysis" (editors D Ferus, W Kühnel, U Simon, B Wegner), Lecture Notes in Math. 838, Springer (1981) 82 | DOI
[10] , , Gromov’s almost flat manifolds, 81, Soc. Math. France (1981) 148
[11] , Differentiability of Lipschitz functions on metric measure spaces, Geom. Funct. Anal. 9 (1999) 428 | DOI
[12] , , , Nilpotent structures and invariant metrics on collapsed manifolds, J. Amer. Math. Soc. 5 (1992) 327 | DOI
[13] , On Jordan’s theorem for complex linear groups, J. Group Theory 10 (2007) 411 | DOI
[14] , , Representations of nilpotent Lie groups and their applications, I : Basic theory and examples, 18, Cambridge Univ. Press (1990)
[15] , A restriction for singularities on collapsing orbifolds, ISRN Geom. (2011) | DOI
[16] , A restriction for singularities on collapsing orbifolds, preprint (2011)
[17] , A boundary of the set of the Riemannian manifolds with bounded curvatures and diameters, J. Differential Geom. 28 (1988) 1
[18] , Collapsing Riemannian manifolds to ones with lower dimension, II, J. Math. Soc. Japan 41 (1989) 333 | DOI
[19] , Hausdorff convergence of Riemannian manifolds and its applications, from: "Recent topics in differential and analytic geometry" (editor T Ochiai), Adv. Stud. Pure Math. 18, Academic Press (1990) 143 | DOI
[20] , Collapsing Riemannian manifolds and its applications, from: "Proceedings of the International Congress of Mathematicians, I" (editor I Satake), Math. Soc. Japan (1991) 491
[21] , , , Local structure of Riemannian manifolds, Indiana Univ. Math. J. 39 (1990) 1305 | DOI
[22] , , Lipschitz convergence of Riemannian manifolds, Pacific J. Math. 131 (1988) 119 | DOI
[23] , Almost flat manifolds, J. Differential Geom. 13 (1978) 231
[24] , Metric structures for Riemannian and non-Riemannian spaces, 152, Birkhäuser (1999) | DOI
[25] , , How to conjugate C1 –close group actions, Math. Z. 132 (1973) 11 | DOI
[26] , , The Euclidean distortion of flat tori, J. Topol. Anal. 5 (2013) 205 | DOI
[27] , Lectures on analysis on metric spaces, Springer (2001) | DOI
[28] , Lectures on Lipschitz analysis, 100, Univ. of Jyväskylä (2005)
[29] , , Flat forms, bi-Lipschitz parameterizations, and smoothability of manifolds, Publ. Math. Inst. Hautes Études Sci. 113 (2011) 1 | DOI
[30] , , Low-distortion embeddings of finite metric spaces, from: "Handbook of discrete and computational geometry" (editors J E Goodman, J O’Rourke), Chapman Hall/CRC (2004) 177
[31] , Perelman’s stability theorem, from: "Surveys in differential geometry, XI" (editors J Cheeger, K Grove), International Press (2007) 103 | DOI
[32] , Riemannian center of mass and mollifier smoothing, Comm. Pure Appl. Math. 30 (1977) 509 | DOI
[33] , , Nonembeddability theorems via Fourier analysis, Math. Ann. 334 (2006) 821 | DOI
[34] , , Locally collapsed 3–manifolds, Astérisque 365, Soc. Math. France (2014) 7
[35] , Ahlfors Q–regular spaces with arbitrary Q > 1 admitting weak Poincaré inequality, Geom. Funct. Anal. 10 (2000) 111 | DOI
[36] , , Bilipschitz embeddings of metric spaces into space forms, Geom. Dedicata 87 (2001) 285 | DOI
[37] , , Kirszbraun’s theorem and metric spaces of bounded curvature, Geom. Funct. Anal. 7 (1997) 535 | DOI
[38] , Ultrametric spaces bi-Lipschitz embeddable in Rn, Fund. Math. 150 (1996) 25
[39] , , Minimal bi-Lipschitz embedding dimension of ultrametric spaces, Fund. Math. 144 (1994) 181
[40] , On a class of homogeneous spaces, Izvestiya Akad. Nauk. SSSR. Ser. Mat. 13 (1949) 9
[41] , Bi-Lipschitz embeddings into low-dimensional Euclidean spaces, Comment. Math. Univ. Carolin. 31 (1990) 589
[42] , Curvatures of left invariant metrics on Lie groups, Advances in Math. 21 (1976) 293 | DOI
[43] , , , Balls and metrics defined by vector fields, I : Basic properties, Acta Math. 155 (1985) 103 | DOI
[44] , An introduction to the Ribe program, Jpn. J. Math. 7 (2012) 167 | DOI
[45] , , Assouad’s theorem with dimension independent of the snowflaking, Rev. Mat. Iberoam. 28 (2012) 1123 | DOI
[46] , , , , Markov chains in smooth Banach spaces and Gromov-hyperbolic metric spaces, Duke Math. J. 134 (2006) 165 | DOI
[47] , Bounded curvature closure of the set of compact Riemannian manifolds, Bull. Amer. Math. Soc. 24 (1991) 171 | DOI
[48] , Métriques de Carnot–Carathéodory et quasiisométries des espaces symétriques de rang un, Ann. of Math. 129 (1989) 1 | DOI
[49] , Foundations of hyperbolic manifolds, 149, Springer (2006) | DOI
[50] , Conformal Grushin spaces, Conform. Geom. Dyn. 20 (2016) 97 | DOI
[51] , On the fundamental groups of manifolds of positive sectional curvature, Ann. of Math. 143 (1996) 397 | DOI
[52] , Almost flat manifolds, J. Differential Geom. 17 (1982) 1
[53] , Bi-Lipschitz mappings and strong A∞ weights, Ann. Acad. Sci. Fenn. Ser. A I Math. 18 (1993) 211
[54] , On the nonexistence of bi-Lipschitz parameterizations and geometric problems about A∞–weights, Rev. Mat. Iberoamericana 12 (1996) 337 | DOI
[55] , A characterization of bi-Lipschitz embeddable metric spaces in terms of local bi-Lipschitz embeddability, Math. Res. Lett. 18 (2011) 1179 | DOI
[56] , How Riemannian manifolds converge, from: "Metric and differential geometry" (editors X Dai, X Rong), Progr. Math. 297, Springer (2012) 91 | DOI
[57] , Hilbert’s fifth problem and related topics, 153, Amer. Math. Soc. (2014)
[58] , The geometry and topology of three-manifolds, lecture notes (1979)
[59] , Three-dimensional geometry and topology, I, 35, Princeton Univ. Press (1997)
[60] , Surfaces with generalized second fundamental form in L2 are Lipschitz manifolds, J. Differential Geom. 39 (1994) 65
[61] , Geometric conditions and existence of bi-Lipschitz parameterizations, Duke Math. J. 77 (1995) 193 | DOI
[62] , , , Analysis and geometry on groups, 100, Cambridge Univ. Press (1992)
Cité par Sources :