From operator categories to higher operads
Geometry & topology, Tome 22 (2018) no. 4, pp. 1893-1959.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We introduce the notion of an operator category and two different models for homotopy theory of –operads over an operator category — one of which extends Lurie’s theory of –operads, the other of which is completely new, even in the commutative setting. We define perfect operator categories, and we describe a category Λ(Φ) attached to a perfect operator category Φ that provides Segal maps. We define a wreath product of operator categories and a form of the Boardman–Vogt tensor product that lies over it. We then give examples of operator categories that provide universal properties for the operads An and En (1 n +) and also a collection of new examples.

DOI : 10.2140/gt.2018.22.1893
Classification : 18D50, 55U40
Keywords: operator categories, $\infty$–operads, $E_n$–operads, wreath product, Boardman–Vogt tensor product, Leinster category, Segal spaces

Barwick, Clark 1

1 School of Mathematics, University of Edinburgh, Edinburgh, United Kingdom
@article{GT_2018_22_4_a0,
     author = {Barwick, Clark},
     title = {From operator categories to higher operads},
     journal = {Geometry & topology},
     pages = {1893--1959},
     publisher = {mathdoc},
     volume = {22},
     number = {4},
     year = {2018},
     doi = {10.2140/gt.2018.22.1893},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.1893/}
}
TY  - JOUR
AU  - Barwick, Clark
TI  - From operator categories to higher operads
JO  - Geometry & topology
PY  - 2018
SP  - 1893
EP  - 1959
VL  - 22
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.1893/
DO  - 10.2140/gt.2018.22.1893
ID  - GT_2018_22_4_a0
ER  - 
%0 Journal Article
%A Barwick, Clark
%T From operator categories to higher operads
%J Geometry & topology
%D 2018
%P 1893-1959
%V 22
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.1893/
%R 10.2140/gt.2018.22.1893
%F GT_2018_22_4_a0
Barwick, Clark. From operator categories to higher operads. Geometry & topology, Tome 22 (2018) no. 4, pp. 1893-1959. doi : 10.2140/gt.2018.22.1893. http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.1893/

[1] D W Anderson, Spectra and Γ–sets, from: "Algebraic topology" (editor A Liulevicius), Amer. Math. Soc. (1971) 23

[2] C Barwick, On left and right model categories and left and right Bousfield localizations, Homology Homotopy Appl. 12 (2010) 245 | DOI

[3] C Barwick, D M Kan, Relative categories: another model for the homotopy theory of homotopy theories, Indag. Math. 23 (2012) 42 | DOI

[4] C Barwick, C Schommer-Pries, On the unicity of the homotopy theory of higher categories, preprint (2011)

[5] M A Batanin, The Eckmann–Hilton argument and higher operads, Adv. Math. 217 (2008) 334 | DOI

[6] C Berger, Iterated wreath product of the simplex category and iterated loop spaces, Adv. Math. 213 (2007) 230 | DOI

[7] C Berger, P A Melliès, M Weber, Monads with arities and their associated theories, J. Pure Appl. Algebra 216 (2012) 2029 | DOI

[8] J M Boardman, R M Vogt, Tensor products of theories, application to infinite loop spaces, J. Pure Appl. Algebra 14 (1979) 117 | DOI

[9] P S Hirschhorn, Model categories and their localizations, 99, Amer. Math. Soc. (2003)

[10] A Joyal, M Tierney, Quasi-categories vs Segal spaces, from: "Categories in algebra, geometry and mathematical physics" (editors A Davydov, M Batanin, M Johnson, S Lack, A Neeman), Contemp. Math. 431, Amer. Math. Soc. (2007) 277 | DOI

[11] T Leinster, Homotopy algebras for operads, preprint (2000)

[12] J Lurie, Higher topos theory, 170, Princeton Univ. Press (2009) | DOI

[13] J Lurie, Higher algebra, book project (2012)

[14] J P May, R Thomason, The uniqueness of infinite loop space machines, Topology 17 (1978) 205 | DOI

[15] I Moerdijk, I Weiss, Dendroidal sets, Algebr. Geom. Topol. 7 (2007) 1441 | DOI

[16] C Rezk, A model for the homotopy theory of homotopy theory, Trans. Amer. Math. Soc. 353 (2001) 973 | DOI

[17] A Robinson, Gamma homology, Lie representations and E∞ multiplications, Invent. Math. 152 (2003) 331 | DOI

[18] G Segal, Categories and cohomology theories, Topology 13 (1974) 293 | DOI

[19] R Street, Fibrations in bicategories, Cahiers Topologie Géom. Différentielle 21 (1980) 111

[20] R W Thomason, Uniqueness of delooping machines, Duke Math. J. 46 (1979) 217 | DOI

[21] B Toën, Dualité de Tannaka supérieure, I : Structures monoidale, preprint (2000)

[22] M Weber, Generic morphisms, parametric representations and weakly Cartesian monads, Theory Appl. Categ. 13 (2004) 191

[23] M Weber, Familial 2–functors and parametric right adjoints, Theory Appl. Categ. 18 (2007) 665

Cité par Sources :