Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
In this paper, we prove that if an asymptotically Euclidean manifold with nonnegative scalar curvature has long-time existence of Ricci flow, the ADM mass is nonnegative. We also give an independent proof of the positive mass theorem in dimension three.
Li, Yu 1
@article{GT_2018_22_3_a11, author = {Li, Yu}, title = {Ricci flow on asymptotically {Euclidean} manifolds}, journal = {Geometry & topology}, pages = {1837--1891}, publisher = {mathdoc}, volume = {22}, number = {3}, year = {2018}, doi = {10.2140/gt.2018.22.1837}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.1837/} }
Li, Yu. Ricci flow on asymptotically Euclidean manifolds. Geometry & topology, Tome 22 (2018) no. 3, pp. 1837-1891. doi : 10.2140/gt.2018.22.1837. http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.1837/
[1] Sobolev spaces, 140, Elsevier (2003)
, ,[2] Coordinate invariance and energy expressions in general relativity, Phys. Rev. 122 (1961) 997 | DOI
, , ,[3] Some nonlinear problems in Riemannian geometry, Springer (1998) | DOI
,[4] Harmonic function theory, 137, Springer (1992) | DOI
, , ,[5] On a construction of coordinates at infinity on manifolds with fast curvature decay and maximal volume growth, Invent. Math. 97 (1989) 313 | DOI
, , ,[6] The mass of an asymptotically flat manifold, Comm. Pure Appl. Math. 39 (1986) 661 | DOI
,[7] Ricci flow on open 3–manifolds and positive scalar curvature, Geom. Topol. 15 (2011) 927 | DOI
, , ,[8] The conjugate heat equation and ancient solutions of the Ricci flow, Adv. Math. 228 (2011) 2891 | DOI
, ,[9] Pseudolocality for the Ricci flow and applications, Canad. J. Math. 63 (2011) 55 | DOI
, , ,[10] Strong uniqueness of the Ricci flow, J. Differential Geom. 82 (2009) 363 | DOI
,[11] The Ricci flow : techniques and applications, II : Analytic aspects, 144, Amer. Math. Soc. (2008) | DOI
, , , , , , , , , ,[12] The Ricci flow : techniques and applications, III : Geometric-analytic aspects, 163, Amer. Math. Soc. (2010) | DOI
, , , , , , , , , ,[13] Hamilton’s Ricci flow, 77, Amer. Math. Soc. (2006) | DOI
, , ,[14] Lower bounds for the scalar curvatures of noncompact gradient Ricci solitons, C. R. Math. Acad. Sci. Paris 349 (2011) 1265 | DOI
, , ,[15] Width and finite extinction time of Ricci flow, Geom. Topol. 12 (2008) 2537 | DOI
, ,[16] Mass under the Ricci flow, Comm. Math. Phys. 274 (2007) 65 | DOI
, ,[17] Rotationally symmetric shrinking and expanding gradient Kähler–Ricci solitons, J. Differential Geom. 65 (2003) 169 | DOI
, , ,[18] Elliptic partial differential equations of second order, 224, Springer (1983) | DOI
, ,[19] Logarithmic Sobolev inequalities, Amer. J. Math. 97 (1975) 1061 | DOI
,[20] The formation of singularities in the Ricci flow, from: "Surveys in differential geometry, II" (editor S T Yau), International Press (1995) 7
,[21] A mass-decreasing flow in dimension three, Math. Res. Lett. 19 (2012) 927 | DOI
,[22] Mass in Kähler geometry, Comm. Math. Phys. 347 (2016) 183 | DOI
, ,[23] The inverse mean curvature flow and the Riemannian Penrose inequality, J. Differential Geom. 59 (2001) 353 | DOI
, ,[24] Notes on Perelman’s papers, Geom. Topol. 12 (2008) 2587 | DOI
, ,[25] Singular Ricci flows, I, preprint (2014)
, ,[26] The Yamabe problem, Bull. Amer. Math. Soc. 17 (1987) 37 | DOI
, ,[27] On the parabolic kernel of the Schrödinger operator, Acta Math. 156 (1986) 153 | DOI
, ,[28] On the positive mass theorem for manifolds with corners, Comm. Math. Phys. 313 (2012) 425 | DOI
, ,[29] Ricci flow and the Poincaré conjecture, 3, Amer. Math. Soc. (2007)
, ,[30] Smooth metric measure spaces with non-negative curvature, Comm. Anal. Geom. 19 (2011) 451 | DOI
, ,[31] The entropy formula for the Ricci flow and its geometric applications, preprint (2002)
,[32] Finite extinction time for the solutions to the Ricci flow on certain three-manifolds, preprint (2003)
,[33] Ricci flow with surgery on three-manifolds, preprint (2003)
,[34] Logarithmic Sobolev inequalities and the spectrum of Schrödinger operators, J. Funct. Anal. 42 (1981) 110 | DOI
,[35] Variational theory for the total scalar curvature functional for Riemannian metrics and related topics, from: "Topics in calculus of variations" (editor M Giaquinta), Lecture Notes in Math. 1365, Springer (1989) 120 | DOI
,[36] On the proof of the positive mass conjecture in general relativity, Comm. Math. Phys. 65 (1979) 45 | DOI
, ,[37] On the structure of manifolds with positive scalar curvature, Manuscripta Math. 28 (1979) 159 | DOI
, ,[38] Lectures on differential geometry, International Press (1994)
, ,[39] Notes on Perelman’s paper on the entropy formula for the Ricci flow and its geometric applications, preprint (2004)
, , ,[40] Ricci deformation of the metric on complete noncompact Riemannian manifolds, J. Differential Geom. 30 (1989) 303 | DOI
,[41] Bach-flat asymptotically locally Euclidean metrics, Invent. Math. 160 (2005) 357 | DOI
, ,[42] Lectures on the Ricci flow, 325, Cambridge Univ. (2006) | DOI
,[43] A new proof of the positive energy theorem, Comm. Math. Phys. 80 (1981) 381 | DOI
,[44] Strong noncollapsing and uniform Sobolev inequalities for Ricci flow with surgeries, Pacific J. Math. 239 (2009) 179 | DOI
,[45] Extremal of log Sobolev inequality and W entropy on noncompact manifolds, J. Funct. Anal. 263 (2012) 2051 | DOI
,Cité par Sources :