Brane actions, categorifications of Gromov–Witten theory and quantum K–theory
Geometry & topology, Tome 22 (2018) no. 3, pp. 1759-1836.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

Let X be a smooth projective variety. Using the idea of brane actions discovered by Toën, we construct a lax associative action of the operad of stable curves of genus zero on the variety X seen as an object in correspondences in derived stacks. This action encodes the Gromov–Witten theory of X in purely geometrical terms and induces an action on the derived category Qcoh(X) which allows us to recover the quantum K–theory of Givental and Lee.

DOI : 10.2140/gt.2018.22.1759
Classification : 14N35
Keywords: Gromov–Witten theory, higher category, derived algebraic geometry

Mann, Etienne 1 ; Robalo, Marco 2

1 LAREMA UMR - 6093, Département de Mathématiques Bâtiment I, Faculté des Sciences 2, Université d’Angers, Angers, France
2 Sorbonne Université, Faculté des Sciences et Ingénierie, Institut de Mathématiques de Jussieu-PRG, Paris, France
@article{GT_2018_22_3_a10,
     author = {Mann, Etienne and Robalo, Marco},
     title = {Brane actions, categorifications of {Gromov{\textendash}Witten} theory and quantum {K{\textendash}theory}},
     journal = {Geometry & topology},
     pages = {1759--1836},
     publisher = {mathdoc},
     volume = {22},
     number = {3},
     year = {2018},
     doi = {10.2140/gt.2018.22.1759},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.1759/}
}
TY  - JOUR
AU  - Mann, Etienne
AU  - Robalo, Marco
TI  - Brane actions, categorifications of Gromov–Witten theory and quantum K–theory
JO  - Geometry & topology
PY  - 2018
SP  - 1759
EP  - 1836
VL  - 22
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.1759/
DO  - 10.2140/gt.2018.22.1759
ID  - GT_2018_22_3_a10
ER  - 
%0 Journal Article
%A Mann, Etienne
%A Robalo, Marco
%T Brane actions, categorifications of Gromov–Witten theory and quantum K–theory
%J Geometry & topology
%D 2018
%P 1759-1836
%V 22
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.1759/
%R 10.2140/gt.2018.22.1759
%F GT_2018_22_3_a10
Mann, Etienne; Robalo, Marco. Brane actions, categorifications of Gromov–Witten theory and quantum K–theory. Geometry & topology, Tome 22 (2018) no. 3, pp. 1759-1836. doi : 10.2140/gt.2018.22.1759. http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.1759/

[1] C Barwick, On the Q construction for exact quasicategories, preprint (2013)

[2] K Behrend, Gromov–Witten invariants in algebraic geometry, Invent. Math. 127 (1997) 601 | DOI

[3] K Behrend, B Fantechi, The intrinsic normal cone, Invent. Math. 128 (1997) 45 | DOI

[4] K Behrend, Y Manin, Stacks of stable maps and Gromov–Witten invariants, Duke Math. J. 85 (1996) 1 | DOI

[5] D Ben-Zvi, J Francis, D Nadler, Integral transforms and Drinfeld centers in derived algebraic geometry, J. Amer. Math. Soc. 23 (2010) 909 | DOI

[6] B Bhatt, Algebraization and Tannaka duality, Camb. J. Math. 4 (2016) 403 | DOI

[7] B Bhatt, D Halpern-Leistner, Tannaka duality revisited, Adv. Math. 316 (2017) 576 | DOI

[8] A Brini, R Cavalieri, Crepant resolutions and open strings, II, preprint (2014)

[9] A Brini, R Cavalieri, D Ross, Crepant resolutions and open strings, preprint (2013)

[10] J Bryan, T Graber, The crepant resolution conjecture, from: "Algebraic geometry, I" (editors D Abramovich, A Bertram, L Katzarkov, R Pandharipande, M Thaddeus), Proc. Sympos. Pure Math. 80, Amer. Math. Soc. (2009) 23 | DOI

[11] A Chiodo, H Iritani, Y Ruan, Landau–Ginzburg/Calabi–Yau correspondence, global mirror symmetry and Orlov equivalence, Publ. Math. Inst. Hautes Études Sci. 119 (2014) 127 | DOI

[12] H Chu, R Haugseng, G Heuts, Two models for the homotopy theory of ∞–operads, preprint (2016)

[13] I Ciocan-Fontanine, M Kapranov, Virtual fundamental classes via dg–manifolds, Geom. Topol. 13 (2009) 1779 | DOI

[14] D C Cisinski, Les préfaisceaux comme modèles des types d’homotopie, 308, Soc. Math. France (2006)

[15] D C Cisinski, I Moerdijk, Dendroidal sets as models for homotopy operads, J. Topol. 4 (2011) 257 | DOI

[16] D C Cisinski, I Moerdijk, Dendroidal Segal spaces and ∞–operads, J. Topol. 6 (2013) 675 | DOI

[17] D C Cisinski, I Moerdijk, Dendroidal sets and simplicial operads, J. Topol. 6 (2013) 705 | DOI

[18] T Coates, A Corti, H Iritani, H H Tseng, Computing genus-zero twisted Gromov–Witten invariants, Duke Math. J. 147 (2009) 377 | DOI

[19] T Coates, A Givental, Quantum Riemann–Roch, Lefschetz and Serre, Ann. of Math. 165 (2007) 15 | DOI

[20] T Coates, H Iritani, Y Jiang, The crepant transformation conjecture for toric complete intersections, preprint (2014)

[21] T Coates, H Iritani, H H Tseng, Wall-crossings in toric Gromov–Witten theory, I : Crepant examples, Geom. Topol. 13 (2009) 2675 | DOI

[22] K Costello, Higher genus Gromov–Witten invariants as genus zero invariants of symmetric products, Ann. of Math. 164 (2006) 561 | DOI

[23] V Drinfeld, D Gaitsgory, On some finiteness questions for algebraic stacks, preprint (2011)

[24] B Dubrovin, Geometry of 2D topological field theories, from: "Integrable systems and quantum groups" (editors M Francaviglia, S Greco), Lecture Notes in Math. 1620, Springer (1996) 120 | DOI

[25] D Dugger, S Hollander, D C Isaksen, Hypercovers and simplicial presheaves, Math. Proc. Cambridge Philos. Soc. 136 (2004) 9 | DOI

[26] T Dyckerhoff, M Kapranov, Higher Segal spaces, I, preprint (2012)

[27] W Fulton, R Pandharipande, Notes on stable maps and quantum cohomology, from: "Algebraic geometry" (editors J Kollár, R Lazarsfeld, D R Morrison), Proc. Sympos. Pure Math. 62, Amer. Math. Soc. (1997) 45 | DOI

[28] D Gaitsgory, Sheaves of categories and the notion of 1–affineness, preprint (2013)

[29] D Gaitsgory, N Rozenblyum, Ind-coherent sheaves, preprint (2012)

[30] D Gaitsgory, N Rozenblyum, A study in derived algebraic geometry, book project (2016)

[31] E Getzler, M M Kapranov, Modular operads, Compositio Math. 110 (1998) 65 | DOI

[32] A Givental, On the WDVV equation in quantum K–theory, Michigan Math. J. 48 (2000) 295 | DOI

[33] A B Givental, Symplectic geometry of Frobenius structures, from: "Frobenius manifolds" (editors C Hertling, M Marcolli), Aspects Math. E36, Vieweg (2004) 91 | DOI

[34] T Graber, R Pandharipande, Localization of virtual classes, Invent. Math. 135 (1999) 487 | DOI

[35] P Hackney, M Robertson, D Yau, Higher cyclic operads, preprint (2017)

[36] J Hall, D Rydh, Perfect complexes on algebraic stacks, Compositio Math. 153 (2017) 2318 | DOI

[37] D Halpern-Leistner, A Preygel, Mapping stacks and categorical notions of properness, preprint (2014)

[38] R Haugseng, Iterated spans and “classical” topological field theories, preprint (2017)

[39] G Heuts, V Hinich, I Moerdijk, On the equivalence between Lurie’s model and the dendroidal model for infinity-operads, Adv. Math. 302 (2016) 869 | DOI

[40] H Iritani, An integral structure in quantum cohomology and mirror symmetry for toric orbifolds, Adv. Math. 222 (2009) 1016 | DOI

[41] H Iritani, Ruan’s conjecture and integral structures in quantum cohomology, from: "New developments in algebraic geometry, integrable systems and mirror symmetry" (editors M H Saito, S Hosono, K Yoshioka), Adv. Stud. Pure Math. 59, Math. Soc. Japan (2010) 111

[42] M Kapranov, Y Manin, Modules and Morita theorem for operads, Amer. J. Math. 123 (2001) 811 | DOI

[43] L Katzarkov, M Kontsevich, T Pantev, Hodge theoretic aspects of mirror symmetry, from: "From Hodge theory to integrability and TQFT –geometry" (editors R Y Donagi, K Wendland), Proc. Sympos. Pure Math. 78, Amer. Math. Soc. (2008) 87 | DOI

[44] F F Knudsen, The projectivity of the moduli space of stable curves, II : The stacks Mg,n, Math. Scand. 52 (1983) 161 | DOI

[45] M Kontsevich, Enumeration of rational curves via torus actions, from: "The moduli space of curves" (editors R Dijkgraaf, C Faber, G van der Geer), Progr. Math. 129, Birkhäuser (1995) 335 | DOI

[46] M Kontsevich, Y Manin, Gromov–Witten classes, quantum cohomology, and enumerative geometry, Comm. Math. Phys. 164 (1994) 525

[47] Y P Lee, Quantum K–theory, I : Foundations, Duke Math. J. 121 (2004) 389 | DOI

[48] J Li, A degeneration formula of GW–invariants, J. Differential Geom. 60 (2002) 199 | DOI

[49] P Lowrey, T Schürg, Grothendieck–Riemann–Roch for derived schemes, preprint (2012)

[50] J Lurie, Higher topos theory, 170, Princeton Univ. Press (2009) | DOI

[51] J Lurie, Derived algebraic geometry, IX: Closed immersions, preprint (2011)

[52] J Lurie, Derived algebraic geometry, V: Structured spaces, preprint (2011)

[53] J Lurie, Derived algebraic geometry, XIV: Representability theorems, preprint (2012)

[54] J Lurie, Higher algebra, book project (2016)

[55] J Lurie, Spectral algebraic geometry, book project (2016)

[56] Y. Manin, Quantum cohomology, motives, derived categories, I–II, lecture notes (2013)

[57] I Moerdijk, I Weiss, Dendroidal sets, Algebr. Geom. Topol. 7 (2007) 1441 | DOI

[58] F Perroni, Chen–Ruan cohomology of ADE singularities, Internat. J. Math. 18 (2007) 1009 | DOI

[59] S D Raskin, Chiral principal series categories, PhD thesis, Harvard University (2014)

[60] M Robalo, Théorie homotopique motivique des espaces noncommutatifs, PhD thesis, Université de Montpellier (2014)

[61] M Robalo, K–theory and the bridge from motives to noncommutative motives, Adv. Math. 269 (2015) 399 | DOI

[62] Y Ruan, Topological sigma model and Donaldson-type invariants in Gromov theory, Duke Math. J. 83 (1996) 461 | DOI

[63] Y Ruan, The cohomology ring of crepant resolutions of orbifolds, from: "Gromov–Witten theory of spin curves and orbifolds" (editors T J Jarvis, T Kimura, A Vaintrob), Contemp. Math. 403, Amer. Math. Soc. (2006) 117 | DOI

[64] Y Ruan, G Tian, A mathematical theory of quantum cohomology, Math. Res. Lett. 1 (1994) 269 | DOI

[65] Y Ruan, G Tian, Higher genus symplectic invariants and sigma models coupled with gravity, Invent. Math. 130 (1997) 455 | DOI

[66] T Schürg, Deriving Deligne–Mumford stacks with perfect obstruction theories, Geom. Topol. 17 (2013) 73 | DOI

[67] T Schürg, B Toën, G Vezzosi, Derived algebraic geometry, determinants of perfect complexes, and applications to obstruction theories for maps and complexes, J. Reine Angew. Math. 702 (2015) 1 | DOI

[68] B Toën, The homotopy theory of dg–categories and derived Morita theory, Invent. Math. 167 (2007) 615 | DOI

[69] B Toën, Higher and derived stacks: a global overview, from: "Algebraic geometry, I" (editors D Abramovich, A Bertram, L Katzarkov, R Pandharipande, M Thaddeus), Proc. Sympos. Pure Math. 80, Amer. Math. Soc. (2009) 435 | DOI

[70] B Toën, Derived Azumaya algebras and generators for twisted derived categories, Invent. Math. 189 (2012) 581 | DOI

[71] B Toën, Proper local complete intersection morphisms preserve perfect complexes, preprint (2012)

[72] B Toën, Operations on derived moduli spaces of branes, preprint (2013)

[73] B Toën, Derived algebraic geometry, EMS Surv. Math. Sci. 1 (2014) 153 | DOI

[74] B Toën, G Vezzosi, Homotopical algebraic geometry, II : Geometric stacks and applications, 902, Amer. Math. Soc. (2008) | DOI

[75] H H Tseng, Orbifold quantum Riemann–Roch, Lefschetz and Serre, Geom. Topol. 14 (2010) 1 | DOI

Cité par Sources :