Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
Let be a smooth projective variety. Using the idea of brane actions discovered by Toën, we construct a lax associative action of the operad of stable curves of genus zero on the variety seen as an object in correspondences in derived stacks. This action encodes the Gromov–Witten theory of in purely geometrical terms and induces an action on the derived category which allows us to recover the quantum K–theory of Givental and Lee.
Mann, Etienne 1 ; Robalo, Marco 2
@article{GT_2018_22_3_a10, author = {Mann, Etienne and Robalo, Marco}, title = {Brane actions, categorifications of {Gromov{\textendash}Witten} theory and quantum {K{\textendash}theory}}, journal = {Geometry & topology}, pages = {1759--1836}, publisher = {mathdoc}, volume = {22}, number = {3}, year = {2018}, doi = {10.2140/gt.2018.22.1759}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.1759/} }
TY - JOUR AU - Mann, Etienne AU - Robalo, Marco TI - Brane actions, categorifications of Gromov–Witten theory and quantum K–theory JO - Geometry & topology PY - 2018 SP - 1759 EP - 1836 VL - 22 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.1759/ DO - 10.2140/gt.2018.22.1759 ID - GT_2018_22_3_a10 ER -
%0 Journal Article %A Mann, Etienne %A Robalo, Marco %T Brane actions, categorifications of Gromov–Witten theory and quantum K–theory %J Geometry & topology %D 2018 %P 1759-1836 %V 22 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.1759/ %R 10.2140/gt.2018.22.1759 %F GT_2018_22_3_a10
Mann, Etienne; Robalo, Marco. Brane actions, categorifications of Gromov–Witten theory and quantum K–theory. Geometry & topology, Tome 22 (2018) no. 3, pp. 1759-1836. doi : 10.2140/gt.2018.22.1759. http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.1759/
[1] On the Q construction for exact quasicategories, preprint (2013)
,[2] Gromov–Witten invariants in algebraic geometry, Invent. Math. 127 (1997) 601 | DOI
,[3] The intrinsic normal cone, Invent. Math. 128 (1997) 45 | DOI
, ,[4] Stacks of stable maps and Gromov–Witten invariants, Duke Math. J. 85 (1996) 1 | DOI
, ,[5] Integral transforms and Drinfeld centers in derived algebraic geometry, J. Amer. Math. Soc. 23 (2010) 909 | DOI
, , ,[6] Algebraization and Tannaka duality, Camb. J. Math. 4 (2016) 403 | DOI
,[7] Tannaka duality revisited, Adv. Math. 316 (2017) 576 | DOI
, ,[8] Crepant resolutions and open strings, II, preprint (2014)
, ,[9] Crepant resolutions and open strings, preprint (2013)
, , ,[10] The crepant resolution conjecture, from: "Algebraic geometry, I" (editors D Abramovich, A Bertram, L Katzarkov, R Pandharipande, M Thaddeus), Proc. Sympos. Pure Math. 80, Amer. Math. Soc. (2009) 23 | DOI
, ,[11] Landau–Ginzburg/Calabi–Yau correspondence, global mirror symmetry and Orlov equivalence, Publ. Math. Inst. Hautes Études Sci. 119 (2014) 127 | DOI
, , ,[12] Two models for the homotopy theory of ∞–operads, preprint (2016)
, , ,[13] Virtual fundamental classes via dg–manifolds, Geom. Topol. 13 (2009) 1779 | DOI
, ,[14] Les préfaisceaux comme modèles des types d’homotopie, 308, Soc. Math. France (2006)
,[15] Dendroidal sets as models for homotopy operads, J. Topol. 4 (2011) 257 | DOI
, ,[16] Dendroidal Segal spaces and ∞–operads, J. Topol. 6 (2013) 675 | DOI
, ,[17] Dendroidal sets and simplicial operads, J. Topol. 6 (2013) 705 | DOI
, ,[18] Computing genus-zero twisted Gromov–Witten invariants, Duke Math. J. 147 (2009) 377 | DOI
, , , ,[19] Quantum Riemann–Roch, Lefschetz and Serre, Ann. of Math. 165 (2007) 15 | DOI
, ,[20] The crepant transformation conjecture for toric complete intersections, preprint (2014)
, , ,[21] Wall-crossings in toric Gromov–Witten theory, I : Crepant examples, Geom. Topol. 13 (2009) 2675 | DOI
, , ,[22] Higher genus Gromov–Witten invariants as genus zero invariants of symmetric products, Ann. of Math. 164 (2006) 561 | DOI
,[23] On some finiteness questions for algebraic stacks, preprint (2011)
, ,[24] Geometry of 2D topological field theories, from: "Integrable systems and quantum groups" (editors M Francaviglia, S Greco), Lecture Notes in Math. 1620, Springer (1996) 120 | DOI
,[25] Hypercovers and simplicial presheaves, Math. Proc. Cambridge Philos. Soc. 136 (2004) 9 | DOI
, , ,[26] Higher Segal spaces, I, preprint (2012)
, ,[27] Notes on stable maps and quantum cohomology, from: "Algebraic geometry" (editors J Kollár, R Lazarsfeld, D R Morrison), Proc. Sympos. Pure Math. 62, Amer. Math. Soc. (1997) 45 | DOI
, ,[28] Sheaves of categories and the notion of 1–affineness, preprint (2013)
,[29] Ind-coherent sheaves, preprint (2012)
, ,[30] A study in derived algebraic geometry, book project (2016)
, ,[31] Modular operads, Compositio Math. 110 (1998) 65 | DOI
, ,[32] On the WDVV equation in quantum K–theory, Michigan Math. J. 48 (2000) 295 | DOI
,[33] Symplectic geometry of Frobenius structures, from: "Frobenius manifolds" (editors C Hertling, M Marcolli), Aspects Math. E36, Vieweg (2004) 91 | DOI
,[34] Localization of virtual classes, Invent. Math. 135 (1999) 487 | DOI
, ,[35] Higher cyclic operads, preprint (2017)
, , ,[36] Perfect complexes on algebraic stacks, Compositio Math. 153 (2017) 2318 | DOI
, ,[37] Mapping stacks and categorical notions of properness, preprint (2014)
, ,[38] Iterated spans and “classical” topological field theories, preprint (2017)
,[39] On the equivalence between Lurie’s model and the dendroidal model for infinity-operads, Adv. Math. 302 (2016) 869 | DOI
, , ,[40] An integral structure in quantum cohomology and mirror symmetry for toric orbifolds, Adv. Math. 222 (2009) 1016 | DOI
,[41] Ruan’s conjecture and integral structures in quantum cohomology, from: "New developments in algebraic geometry, integrable systems and mirror symmetry" (editors M H Saito, S Hosono, K Yoshioka), Adv. Stud. Pure Math. 59, Math. Soc. Japan (2010) 111
,[42] Modules and Morita theorem for operads, Amer. J. Math. 123 (2001) 811 | DOI
, ,[43] Hodge theoretic aspects of mirror symmetry, from: "From Hodge theory to integrability and TQFT –geometry" (editors R Y Donagi, K Wendland), Proc. Sympos. Pure Math. 78, Amer. Math. Soc. (2008) 87 | DOI
, , ,[44] The projectivity of the moduli space of stable curves, II : The stacks Mg,n, Math. Scand. 52 (1983) 161 | DOI
,[45] Enumeration of rational curves via torus actions, from: "The moduli space of curves" (editors R Dijkgraaf, C Faber, G van der Geer), Progr. Math. 129, Birkhäuser (1995) 335 | DOI
,[46] Gromov–Witten classes, quantum cohomology, and enumerative geometry, Comm. Math. Phys. 164 (1994) 525
, ,[47] Quantum K–theory, I : Foundations, Duke Math. J. 121 (2004) 389 | DOI
,[48] A degeneration formula of GW–invariants, J. Differential Geom. 60 (2002) 199 | DOI
,[49] Grothendieck–Riemann–Roch for derived schemes, preprint (2012)
, ,[50] Higher topos theory, 170, Princeton Univ. Press (2009) | DOI
,[51] Derived algebraic geometry, IX: Closed immersions, preprint (2011)
,[52] Derived algebraic geometry, V: Structured spaces, preprint (2011)
,[53] Derived algebraic geometry, XIV: Representability theorems, preprint (2012)
,[54] Higher algebra, book project (2016)
,[55] Spectral algebraic geometry, book project (2016)
,[56] Quantum cohomology, motives, derived categories, I–II, lecture notes (2013)
,[57] Dendroidal sets, Algebr. Geom. Topol. 7 (2007) 1441 | DOI
, ,[58] Chen–Ruan cohomology of ADE singularities, Internat. J. Math. 18 (2007) 1009 | DOI
,[59] Chiral principal series categories, PhD thesis, Harvard University (2014)
,[60] Théorie homotopique motivique des espaces noncommutatifs, PhD thesis, Université de Montpellier (2014)
,[61] K–theory and the bridge from motives to noncommutative motives, Adv. Math. 269 (2015) 399 | DOI
,[62] Topological sigma model and Donaldson-type invariants in Gromov theory, Duke Math. J. 83 (1996) 461 | DOI
,[63] The cohomology ring of crepant resolutions of orbifolds, from: "Gromov–Witten theory of spin curves and orbifolds" (editors T J Jarvis, T Kimura, A Vaintrob), Contemp. Math. 403, Amer. Math. Soc. (2006) 117 | DOI
,[64] A mathematical theory of quantum cohomology, Math. Res. Lett. 1 (1994) 269 | DOI
, ,[65] Higher genus symplectic invariants and sigma models coupled with gravity, Invent. Math. 130 (1997) 455 | DOI
, ,[66] Deriving Deligne–Mumford stacks with perfect obstruction theories, Geom. Topol. 17 (2013) 73 | DOI
,[67] Derived algebraic geometry, determinants of perfect complexes, and applications to obstruction theories for maps and complexes, J. Reine Angew. Math. 702 (2015) 1 | DOI
, , ,[68] The homotopy theory of dg–categories and derived Morita theory, Invent. Math. 167 (2007) 615 | DOI
,[69] Higher and derived stacks: a global overview, from: "Algebraic geometry, I" (editors D Abramovich, A Bertram, L Katzarkov, R Pandharipande, M Thaddeus), Proc. Sympos. Pure Math. 80, Amer. Math. Soc. (2009) 435 | DOI
,[70] Derived Azumaya algebras and generators for twisted derived categories, Invent. Math. 189 (2012) 581 | DOI
,[71] Proper local complete intersection morphisms preserve perfect complexes, preprint (2012)
,[72] Operations on derived moduli spaces of branes, preprint (2013)
,[73] Derived algebraic geometry, EMS Surv. Math. Sci. 1 (2014) 153 | DOI
,[74] Homotopical algebraic geometry, II : Geometric stacks and applications, 902, Amer. Math. Soc. (2008) | DOI
, ,[75] Orbifold quantum Riemann–Roch, Lefschetz and Serre, Geom. Topol. 14 (2010) 1 | DOI
,Cité par Sources :