Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
Let be a global function field of characteristic , and let be a finite-index subgroup of an arithmetic group defined with respect to and such that any torsion element of is a –torsion element. We define semiduality groups, and we show that is a –semiduality group if acts as a lattice on a product of trees. We also give other examples of semiduality groups, including lamplighter groups, Diestel–Leader groups, and countable sums of finite groups.
Studenmund, Daniel 1 ; Wortman, Kevin 1
@article{GT_2018_22_3_a9, author = {Studenmund, Daniel and Wortman, Kevin}, title = {Semidualities from products of trees}, journal = {Geometry & topology}, pages = {1717--1758}, publisher = {mathdoc}, volume = {22}, number = {3}, year = {2018}, doi = {10.2140/gt.2018.22.1717}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.1717/} }
Studenmund, Daniel; Wortman, Kevin. Semidualities from products of trees. Geometry & topology, Tome 22 (2018) no. 3, pp. 1717-1758. doi : 10.2140/gt.2018.22.1717. http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.1717/
[1] Horocyclic products of trees, J. Eur. Math. Soc. 10 (2008) 771 | DOI
, , ,[2] Endliche Erzeugbarkeit arithmetischer Gruppen über Funktionenkörpern, Invent. Math. 7 (1969) 1 | DOI
,[3] Filling boundaries of coarse manifolds in semisimple and solvable arithmetic groups, J. Eur. Math. Soc. 15 (2013) 2165 | DOI
, , ,[4] Finiteness properties of duality groups, Comment. Math. Helv. 49 (1974) 74 | DOI
, ,[5] Corners and arithmetic groups, Comment. Math. Helv. 48 (1973) 436 | DOI
, ,[6] Cohomologie d’immeubles et de groupes S–arithmétiques, Topology 15 (1976) 211 | DOI
, ,[7] Cohomology of groups, 87, Springer (1982) | DOI
,[8] Finiteness properties of groups, J. Pure Appl. Algebra 44 (1987) 45 | DOI
,[9] Finiteness properties of soluble arithmetic groups over global function fields, Geom. Topol. 8 (2004) 611 | DOI
,[10] Higher finiteness properties of reductive arithmetic groups in positive characteristic: the rank theorem, Ann. of Math. 177 (2013) 311 | DOI
, , ,[11] Finiteness properties of arithmetic groups over function fields, Invent. Math. 167 (2007) 355 | DOI
, ,[12] Connectivity properties of horospheres in Euclidean buildings and applications to finiteness properties of discrete groups, Invent. Math. 185 (2011) 395 | DOI
, ,[13] Bounding the homological finiteness length, Bull. Lond. Math. Soc. 44 (2012) 1209 | DOI
,[14] Minkowskische Reduktionstheorie über Funktionenkörpern, Invent. Math. 7 (1969) 33 | DOI
,[15] On groups of type (FP)∞, J. Pure Appl. Algebra 90 (1993) 55 | DOI
,[16] Homological properties of certain arithmetic groups in the function field case, Invent. Math. 57 (1980) 263 | DOI
,[17] An introduction to homological algebra, 38, Cambridge Univ. Press (1994) | DOI
,[18] A finitely presented solvable group with a small quasi-isometry group, Michigan Math. J. 55 (2007) 3 | DOI
,Cité par Sources :