Hyperbolic Dehn filling in dimension four
Geometry & topology, Tome 22 (2018) no. 3, pp. 1647-1716.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We introduce and study some deformations of complete finite-volume hyperbolic four-manifolds that may be interpreted as four-dimensional analogues of Thurston’s hyperbolic Dehn filling.

We construct in particular an analytic path of complete, finite-volume cone four-manifolds Mt that interpolates between two hyperbolic four-manifolds M0 and M1 with the same volume 8 3π2. The deformation looks like the familiar hyperbolic Dehn filling paths that occur in dimension three, where the cone angle of a core simple closed geodesic varies monotonically from 0 to 2π. Here, the singularity of Mt is an immersed geodesic surface whose cone angles also vary monotonically from 0 to 2π. When a cone angle tends to 0 a small core surface (a torus or Klein bottle) is drilled, producing a new cusp.

We show that various instances of hyperbolic Dehn fillings may arise, including one case where a degeneration occurs when the cone angles tend to 2π, like in the famous figure-eight knot complement example.

The construction makes an essential use of a family of four-dimensional deforming hyperbolic polytopes recently discovered by Kerckhoff and Storm.

DOI : 10.2140/gt.2018.22.1647
Classification : 57M50
Keywords: hyperbolic $4$–manifolds, cone manifolds, Dehn filling

Martelli, Bruno 1 ; Riolo, Stefano 1

1 Dipartimento di Matematica, Università di Pisa, Pisa, Italy
@article{GT_2018_22_3_a8,
     author = {Martelli, Bruno and Riolo, Stefano},
     title = {Hyperbolic {Dehn} filling in dimension four},
     journal = {Geometry & topology},
     pages = {1647--1716},
     publisher = {mathdoc},
     volume = {22},
     number = {3},
     year = {2018},
     doi = {10.2140/gt.2018.22.1647},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.1647/}
}
TY  - JOUR
AU  - Martelli, Bruno
AU  - Riolo, Stefano
TI  - Hyperbolic Dehn filling in dimension four
JO  - Geometry & topology
PY  - 2018
SP  - 1647
EP  - 1716
VL  - 22
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.1647/
DO  - 10.2140/gt.2018.22.1647
ID  - GT_2018_22_3_a8
ER  - 
%0 Journal Article
%A Martelli, Bruno
%A Riolo, Stefano
%T Hyperbolic Dehn filling in dimension four
%J Geometry & topology
%D 2018
%P 1647-1716
%V 22
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.1647/
%R 10.2140/gt.2018.22.1647
%F GT_2018_22_3_a8
Martelli, Bruno; Riolo, Stefano. Hyperbolic Dehn filling in dimension four. Geometry & topology, Tome 22 (2018) no. 3, pp. 1647-1716. doi : 10.2140/gt.2018.22.1647. http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.1647/

[1] D V Alekseevskij, È B Vinberg, A S Solodovnikov, Geometry of spaces of constant curvature, from: "Geometry, II", Encyclopaedia Math. Sci. 29, Springer (1993) 1 | DOI

[2] E M Andreev, The intersection of the planes of the faces of polyhedra with sharp angles, Mat. Zametki 8 (1970) 521

[3] M Boileau, B Leeb, J Porti, Geometrization of 3–dimensional orbifolds, Ann. of Math. 162 (2005) 195 | DOI

[4] K Bromberg, Hyperbolic cone-manifolds, short geodesics, and Schwarzian derivatives, J. Amer. Math. Soc. 17 (2004) 783 | DOI

[5] D Cooper, C D Hodgson, S P Kerckhoff, Three-dimensional orbifolds and cone-manifolds, 5, Mathematical Society of Japan (2000) | DOI

[6] D A Derevnin, A D Mednykh, M G Pashkevich, The volume of a symmetric tetrahedron in a hyperbolic and a spherical space, Sibirsk. Mat. Zh. 45 (2004) 1022

[7] K Fujiwara, J F Manning, CAT(0) and CAT(−1) fillings of hyperbolic manifolds, J. Differential Geom. 85 (2010) 229 | DOI

[8] K Fujiwara, J F Manning, Simplicial volume and fillings of hyperbolic manifolds, Algebr. Geom. Topol. 11 (2011) 2237 | DOI

[9] H Garland, M S Raghunathan, Fundamental domains for lattices in (R–)rank 1 semisimple Lie groups, Ann. of Math. 92 (1970) 279 | DOI

[10] R Guglielmetti, M Jacquemet, R Kellerhals, Commensurability of hyperbolic Coxeter groups: theory and computation, preprint (2017)

[11] C D Hodgson, S P Kerckhoff, Rigidity of hyperbolic cone-manifolds and hyperbolic Dehn surgery, J. Differential Geom. 48 (1998) 1 | DOI

[12] M Jacquemet, New contributions to hyperbolic polyhedra, reflection groups, and their commensurability, PhD thesis, Université de Fribourg (2015)

[13] S P Kerckhoff, P A Storm, From the hyperbolic 24–cell to the cuboctahedron, Geom. Topol. 14 (2010) 1383 | DOI

[14] S Kojima, Deformations of hyperbolic 3–cone-manifolds, J. Differential Geom. 49 (1998) 469 | DOI

[15] A Kolpakov, B Martelli, Hyperbolic four-manifolds with one cusp, Geom. Funct. Anal. 23 (2013) 1903 | DOI

[16] C Maclachlan, Commensurability classes of discrete arithmetic hyperbolic groups, Groups Geom. Dyn. 5 (2011) 767 | DOI

[17] R Mazzeo, G Montcouquiol, Infinitesimal rigidity of cone-manifolds and the Stoker problem for hyperbolic and Euclidean polyhedra, J. Differential Geom. 87 (2011) 525 | DOI

[18] C T Mcmullen, The Gauss–Bonnet theorem for cone manifolds and volumes of moduli spaces, Amer. J. Math. 139 (2017) 261 | DOI

[19] G Montcouquiol, On the rigidity of hyperbolic cone-manifolds, C. R. Math. Acad. Sci. Paris 340 (2005) 677 | DOI

[20] G Montcouquiol, Déformations Einstein infinitésimales de cones-variétés hyperboliques, preprint (2006)

[21] G D Mostow, Strong rigidity of locally symmetric spaces, 78, Princeton Univ. Press (1973)

[22] G Prasad, Strong rigidity of Q–rank 1 lattices, Invent. Math. 21 (1973) 255 | DOI

[23] S Riolo, L Slavich, New hyperbolic 4–manifolds of low volume, preprint (2017)

[24] L Slavich, The complement of the figure-eight knot geometrically bounds, Proc. Amer. Math. Soc. 145 (2017) 1275 | DOI

[25] W P Thurston, The geometry and topology of three-manifolds, lecture notes (1979)

[26] W P Thurston, Shapes of polyhedra and triangulations of the sphere, from: "The Epstein birthday schrift" (editors I Rivin, C Rourke, C Series), Geom. Topol. Monogr. 1, Geom. Topol. Publ. (1998) 511 | DOI

[27] È B Vinberg, Hyperbolic groups of reflections, Uspekhi Mat. Nauk 40 (1985) 29

[28] H Weiss, Local rigidity of 3–dimensional cone-manifolds, J. Differential Geom. 71 (2005) 437 | DOI

[29] H Weiss, Global rigidity of 3–dimensional cone-manifolds, J. Differential Geom. 76 (2007) 495 | DOI

Cité par Sources :