Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
Y Benoist proved that if a closed three-manifold admits an indecomposable convex real projective structure, then is topologically the union along tori and Klein bottles of finitely many submanifolds each of which admits a complete finite volume hyperbolic structure on its interior. We describe some initial results in the direction of a potential converse to Benoist’s theorem. We show that a cusped hyperbolic three-manifold may, under certain assumptions, be deformed to convex projective structures with totally geodesic torus boundary. Such structures may be convexly glued together whenever the geometry at the boundary matches up. In particular, we prove that many doubles of cusped hyperbolic three-manifolds admit convex projective structures.
Ballas, Samuel 1 ; Danciger, Jeffrey 2 ; Lee, Gye-Seon 3
@article{GT_2018_22_3_a7, author = {Ballas, Samuel and Danciger, Jeffrey and Lee, Gye-Seon}, title = {Convex projective structures on nonhyperbolic three-manifolds}, journal = {Geometry & topology}, pages = {1593--1646}, publisher = {mathdoc}, volume = {22}, number = {3}, year = {2018}, doi = {10.2140/gt.2018.22.1593}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.1593/} }
TY - JOUR AU - Ballas, Samuel AU - Danciger, Jeffrey AU - Lee, Gye-Seon TI - Convex projective structures on nonhyperbolic three-manifolds JO - Geometry & topology PY - 2018 SP - 1593 EP - 1646 VL - 22 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.1593/ DO - 10.2140/gt.2018.22.1593 ID - GT_2018_22_3_a7 ER -
%0 Journal Article %A Ballas, Samuel %A Danciger, Jeffrey %A Lee, Gye-Seon %T Convex projective structures on nonhyperbolic three-manifolds %J Geometry & topology %D 2018 %P 1593-1646 %V 22 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.1593/ %R 10.2140/gt.2018.22.1593 %F GT_2018_22_3_a7
Ballas, Samuel; Danciger, Jeffrey; Lee, Gye-Seon. Convex projective structures on nonhyperbolic three-manifolds. Geometry & topology, Tome 22 (2018) no. 3, pp. 1593-1646. doi : 10.2140/gt.2018.22.1593. http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.1593/
[1] Convexes divisibles, III, Ann. Sci. École Norm. Sup. 38 (2005) 793 | DOI
,[2] Convexes divisibles, IV : Structure du bord en dimension 3, Invent. Math. 164 (2006) 249 | DOI
,[3] Convexes hyperboliques et quasiisométries, Geom. Dedicata 122 (2006) 109 | DOI
,[4] A survey on divisible convex sets, from: "Geometry, analysis and topology of discrete groups" (editors L Ji, K Liu, L Yang, S T Yau), Adv. Lect. Math. 6, International (2008) 1
,[5] Metabelian SL(N, C) representations of knot groups, III : Deformations, Q. J. Math. 65 (2014) 817 | DOI
, ,[6] Regina : software for 3–manifold topology and normal surface theory, (1999–)
, , , ,[7] A 3–manifold group which is not four dimensional linear, J. Pure Appl. Algebra 218 (2014) 1604 | DOI
,[8] On compact, Riemannian manifolds with constant curvature, I, from: "Differential geometry" (editor C B Allendorfer), Proc. Sympos. Pure Math. 3, Amer. Math. Soc. (1961) 155
,[9] Notes on notes of Thurston, from: "Analytical and geometric aspects of hyperbolic space" (editor D B A Epstein), London Math. Soc. Lecture Note Ser. 111, Cambridge Univ. Press (1987) 3
, , ,[10] A classification of radial or totally geodesic ends of real projective orbifolds, I: A survey of results, preprint (2015)
,[11] The convex real projective orbifolds with radial or totally geodesic ends: a survey of some partial results, from: "In the tradition of Ahlfors–Bers, VII" (editors A S Basmajian, Y N Minsky, A W Reid), Contemp. Math. 696, Amer. Math. Soc. (2017) 51 | DOI
,[12] Projective deformations of hyperbolic Coxeter 3–orbifolds of finite volume, in preparation
, , ,[13] Computing varieties of representations of hyperbolic 3–manifolds into SL(4, R), Experiment. Math. 15 (2006) 291
, , ,[14] Flexing closed hyperbolic manifolds, Geom. Topol. 11 (2007) 2413 | DOI
, , ,[15] Deforming convex projective manifolds, Geom. Topol. 22 (2018) 1349 | DOI
, , ,[16] SnapPy : a computer program for studying the topology of 3–manifolds, (2015)
, , ,[17] A geometric transition from hyperbolic to anti-de Sitter geometry, Geom. Topol. 17 (2013) 3077 | DOI
,[18] Sur les espaces localement homogenes, Enseign. Math. 35 (1936) 317
,[19] A census of tetrahedral hyperbolic manifolds, Exp. Math. 25 (2016) 466 | DOI
, , , , ,[20] Affine manifolds and projective geometry on surfaces, BA thesis, Princeton University (1977)
,[21] Geometric structures on manifolds and varieties of representations, from: "Geometry of group representations" (editors W M Goldman, A R Magid), Contemp. Math. 74, Amer. Math. Soc. (1988) 169 | DOI
,[22] Convex real projective structures on compact surfaces, J. Differential Geom. 31 (1990) 791 | DOI
,[23] On Hilbert’s metric for simplices, from: "Geometric group theory, I" (editors G A Niblo, M A Roller), London Math. Soc. Lecture Note Ser. 181, Cambridge Univ. Press (1993) 97 | DOI
,[24] Deformations of reducible representations of knot groups into SL(n, C), Math. Slovaca 66 (2016) 1091 | DOI
, ,[25] Infinitesimal projective rigidity under Dehn filling, Geom. Topol. 15 (2011) 2017 | DOI
, ,[26] Deformations of reducible representations of 3–manifold groups into SL2(C), J. Reine Angew. Math. 530 (2001) 191 | DOI
, , ,[27] Rigidity of hyperbolic cone-manifolds and hyperbolic Dehn surgery, J. Differential Geom. 48 (1998) 1 | DOI
, ,[28] Deformation spaces associated to compact hyperbolic manifolds, from: "Discrete groups in geometry and analysis" (editor R Howe), Progr. Math. 67, Birkhäuser (1987) 48 | DOI
, ,[29] Hyperbolic manifolds and discrete groups, 183, Birkhäuser (2001) | DOI
,[30] Convex projective structures on Gromov–Thurston manifolds, Geom. Topol. 11 (2007) 1777 | DOI
,[31] Déformations de connexions localement plates, Ann. Inst. Fourier Grenoble 18 (1968) 103 | DOI
,[32] Espace des modules de certains polyèdres projectifs miroirs, Geom. Dedicata 147 (2010) 47 | DOI
,[33] Über konvexe Kurven und Flächen, Tôhoku Math. J. 29 (1928) 227
,[34] Mixed 3–manifolds are virtually special, J. Amer. Math. Soc. 31 (2018) 319 | DOI
, ,[35] Foundations of hyperbolic manifolds, 149, Springer (2006) | DOI
,[36] Commuting varieties of semisimple Lie algebras and algebraic groups, Compositio Math. 38 (1979) 311
,[37] The geometry and topology of three-manifolds, lecture notes (1979)
,[38] Über Konvexheit im kleinen und im großen und über gewisse den Punkten einer Menge zugeordnete Dimensionszahlen, Math. Z. 28 (1928) 697 | DOI
,[39] Discrete linear groups that are generated by reflections, Izv. Akad. Nauk SSSR Ser. Mat. 35 (1971) 1072
,[40] On discrete subgroups of Lie groups, Ann. of Math. 72 (1960) 369 | DOI
,[41] On discrete subgroups of Lie groups, II, Ann. of Math. 75 (1962) 578 | DOI
,[42] Research announcement: the structure of groups with a quasiconvex hierarchy, Electron. Res. Announc. Math. Sci. 16 (2009) 44 | DOI
,[43] The structure of groups with a quasiconvex hierarchy, preprint (2011)
,Cité par Sources :