Dynamics on flag manifolds: domains of proper discontinuity and cocompactness
Geometry & topology, Tome 22 (2018) no. 1, pp. 157-234.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

For noncompact semisimple Lie groups G with finite center, we study the dynamics of the actions of their discrete subgroups Γ < G on the associated partial flag manifolds  GP. Our study is based on the observation, already made in the deep work of Benoist, that they exhibit also in higher rank a certain form of convergence-type dynamics. We identify geometrically domains of proper discontinuity in all partial flag manifolds. Under certain dynamical assumptions equivalent to the Anosov subgroup condition, we establish the cocompactness of the Γ–action on various domains of proper discontinuity, in particular on domains in the full flag manifold  GB. In the regular case (eg of B–Anosov subgroups), we prove the nonemptiness of such domains if G has (locally) at least one noncompact simple factor not of the type A1, B2 or G2 by showing the nonexistence of certain ball packings of the visual boundary.

DOI : 10.2140/gt.2018.22.157
Classification : 53C35, 22E40, 37B05, 51E24
Keywords: Anosov subgroups, properly discontinuous actions, cocompact actions

Kapovich, Michael 1 ; Leeb, Bernhard 2 ; Porti, Joan 3

1 Department of Mathematics, University of California, Davis, CA, United States
2 Mathematisches Institut, Universität München, München, Germany
3 Departament de Matemàtiques, Universitat Autònoma de Barcelona, Barcelona, Spain
@article{GT_2018_22_1_a3,
     author = {Kapovich, Michael and Leeb, Bernhard and Porti, Joan},
     title = {Dynamics on flag manifolds: domains of proper discontinuity and cocompactness},
     journal = {Geometry & topology},
     pages = {157--234},
     publisher = {mathdoc},
     volume = {22},
     number = {1},
     year = {2018},
     doi = {10.2140/gt.2018.22.157},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.157/}
}
TY  - JOUR
AU  - Kapovich, Michael
AU  - Leeb, Bernhard
AU  - Porti, Joan
TI  - Dynamics on flag manifolds: domains of proper discontinuity and cocompactness
JO  - Geometry & topology
PY  - 2018
SP  - 157
EP  - 234
VL  - 22
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.157/
DO  - 10.2140/gt.2018.22.157
ID  - GT_2018_22_1_a3
ER  - 
%0 Journal Article
%A Kapovich, Michael
%A Leeb, Bernhard
%A Porti, Joan
%T Dynamics on flag manifolds: domains of proper discontinuity and cocompactness
%J Geometry & topology
%D 2018
%P 157-234
%V 22
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.157/
%R 10.2140/gt.2018.22.157
%F GT_2018_22_1_a3
Kapovich, Michael; Leeb, Bernhard; Porti, Joan. Dynamics on flag manifolds: domains of proper discontinuity and cocompactness. Geometry & topology, Tome 22 (2018) no. 1, pp. 157-234. doi : 10.2140/gt.2018.22.157. http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.157/

[1] Y Benoist, Propriétés asymptotiques des groupes linéaires, Geom. Funct. Anal. 7 (1997) 1 | DOI

[2] A Björner, F Brenti, Combinatorics of Coxeter groups, 231, Springer (2005) | DOI

[3] A Borel, J Tits, Compléments à l’article : “Groupes réductifs”, Inst. Hautes Études Sci. Publ. Math. 41 (1972) 253

[4] N Bourbaki, Éléments de mathématique, XXXIV : Groupes et algèbres de Lie, Chapitres 4–6, 1337, Hermann (1968) | DOI

[5] B H Bowditch, Convergence groups and configuration spaces, from: "Geometric group theory down under" (editors J Cossey, W D Neumann, M Shapiro), de Gruyter (1999) 23

[6] A Cano, J P Navarrete, J Seade, Complex Kleinian groups, 303, Springer (2013) | DOI

[7] C Chevalley, Sur les décompositions cellulaires des espaces G∕B, from: "Algebraic groups and their generalizations: classical methods" (editors W J Haboush, B J Parshall), Proc. Sympos. Pure Math. 56, Amer. Math. Soc. (1994) 1

[8] P B Eberlein, Geometry of nonpositively curved manifolds, Univ. of Chicago Press (1996)

[9] M Farber, J C Hausmann, D Schütz, On the conjecture of Kevin Walker, J. Topol. Anal. 1 (2009) 65 | DOI

[10] C Frances, Lorentzian Kleinian groups, Comment. Math. Helv. 80 (2005) 883 | DOI

[11] O Guichard, A Wienhard, Anosov representations: domains of discontinuity and applications, Invent. Math. 190 (2012) 357 | DOI

[12] Y Guivarc’H, Produits de matrices aléatoires et applications aux propriétés géométriques des sous-groupes du groupe linéaire, Ergodic Theory Dynam. Systems 10 (1990) 483 | DOI

[13] S Helgason, Differential geometry, Lie groups, and symmetric spaces, 34, Amer. Math. Soc. (2001) | DOI

[14] J E Humphreys, Reflection groups and Coxeter groups, 29, Cambridge Univ. Press (1990) | DOI

[15] M Kapovich, B Leeb, Discrete isometry groups of symmetric spaces, MSRI lecture notes (2015)

[16] M Kapovich, B Leeb, Finsler bordifications of symmetric and certain locally symmetric spaces, preprint (2015)

[17] M Kapovich, B Leeb, J Millson, Convex functions on symmetric spaces, side lengths of polygons and the stability inequalities for weighted configurations at infinity, J. Differential Geom. 81 (2009) 297 | DOI

[18] M Kapovich, B Leeb, J Porti, Dynamics at infinity of regular discrete subgroups of isometries of higher rank symmetric spaces, preprint (2013)

[19] M Kapovich, B Leeb, J Porti, Morse actions of discrete groups on symmetric space, preprint (2014)

[20] M Kapovich, B Leeb, J Porti, A Morse lemma for quasigeodesics in symmetric spaces and euclidean buildings, preprint (2014)

[21] M Kapovich, B Leeb, J Porti, Anosov subgroups: dynamical and geometric characterizations, (2016)

[22] M Kapovich, B Leeb, J Porti, Some recent results on Anosov representations, Transform. Groups 21 (2016) 1105 | DOI

[23] M Kapovich, J Millson, On the moduli space of polygons in the Euclidean plane, J. Differential Geom. 42 (1995) 133 | DOI

[24] M Kapovich, J J Millson, A path model for geodesics in Euclidean buildings and its applications to representation theory, Groups Geom. Dyn. 2 (2008) 405 | DOI

[25] A Karlsson, On the dynamics of isometries, Geom. Topol. 9 (2005) 2359 | DOI

[26] B Kleiner, B Leeb, Rigidity of quasi-isometries for symmetric spaces and Euclidean buildings, Inst. Hautes Études Sci. Publ. Math. 86 (1997) 115

[27] R S Kulkarni, Groups with domains of discontinuity, Math. Ann. 237 (1978) 253 | DOI

[28] F Labourie, Anosov flows, surface groups and curves in projective space, Invent. Math. 165 (2006) 51 | DOI

[29] B Leeb, A characterization of irreducible symmetric spaces and Euclidean buildings of higher rank by their asymptotic geometry, 326, Univ. Bonn, Math. Inst. (2000)

[30] P Littelmann, Paths and root operators in representation theory, Ann. of Math. 142 (1995) 499 | DOI

[31] S A Mitchell, Quillen’s theorem on buildings and the loops on a symmetric space, Enseign. Math. 34 (1988) 123

[32] S A Mitchell, Parabolic orbits in flag varieties, preprint (2008)

[33] D Mumford, J Fogarty, F Kirwan, Geometric invariant theory, 34, Springer (1994) | DOI

[34] P Papasoglu, E Swenson, Boundaries and JSJ decompositions of CAT(0)-groups, Geom. Funct. Anal. 19 (2009) 559 | DOI

[35] A Parreau, La distance vectorielle dans les immeubles affines et les espaces symétriques, in preparation

[36] D Schütz, The isomorphism problem for planar polygon spaces, J. Topol. 3 (2010) 713 | DOI

[37] D Sullivan, Quasiconformal homeomorphisms and dynamics, II : Structural stability implies hyperbolicity for Kleinian groups, Acta Math. 155 (1985) 243 | DOI

Cité par Sources :