Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
Let be a finite group. We show that the rational equivariant homotopy groups of symmetric products of the –equivariant sphere spectrum are naturally isomorphic to the rational homology groups of certain subcomplexes of the subgroup lattice of .
Hausmann, Markus 1
@article{GT_2018_22_3_a6, author = {Hausmann, Markus}, title = {Symmetric products and subgroup lattices}, journal = {Geometry & topology}, pages = {1547--1591}, publisher = {mathdoc}, volume = {22}, number = {3}, year = {2018}, doi = {10.2140/gt.2018.22.1547}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.1547/} }
Hausmann, Markus. Symmetric products and subgroup lattices. Geometry & topology, Tome 22 (2018) no. 3, pp. 1547-1591. doi : 10.2140/gt.2018.22.1547. http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.1547/
[1] A branching rule for partition complexes, preprint (2015)
,[2] The action of Young subgroups on the partition complex, preprint (2018)
, ,[3] Partition complexes, Tits buildings and symmetric products, Proc. London Math. Soc. 82 (2001) 229 | DOI
, ,[4] Generalized Tate cohomology, 543, Amer. Math. Soc. (1995) | DOI
, ,[5] On the nonexistence of elements of Kervaire invariant one, Ann. of Math. 184 (2016) 1 | DOI
, , ,[6] Model categories and their localizations, 99, Amer. Math. Soc. (2003)
,[7] Type d’homotopie des treillis et treillis des sous-groupes d’un groupe fini, Comment. Math. Helv. 60 (1985) 85 | DOI
, ,[8] A Kahn–Priddy sequence and a conjecture of G W Whitehead, Math. Proc. Cambridge Philos. Soc. 92 (1982) 467 | DOI
,[9] A filtration of spectra arising from families of subgroups of symmetric groups, Trans. Amer. Math. Soc. 352 (2000) 3211 | DOI
,[10] Equivariant orthogonal spectra and S–modules, 755, Amer. Math. Soc. (2002) | DOI
, ,[11] Model categories of diagram spectra, Proc. London Math. Soc. 82 (2001) 441 | DOI
, , , ,[12] Cohomology mod p of symmetric products of spheres, J. Inst. Polytech. Osaka City Univ. Ser. A 9 (1958) 1
,[13] A note on the equivariant Dold–Thom theorem, J. Pure Appl. Algebra 183 (2003) 299 | DOI
,[14] Equivariant properties of symmetric products, J. Amer. Math. Soc. 30 (2017) 673 | DOI
,[15] Global homotopy theory, book project, v0.53 (2017)
,[16] Stable model categories are categories of modules, Topology 42 (2003) 103 | DOI
, ,[17] The Steinberg character of a finite group with BN–pair, from: "Theory of finite groups" (editors R Brauer, C H Sah), Benjamin (1969) 213
,[18] The homotopy category is a homotopy category, Arch. Math. (Basel) 23 (1972) 435 | DOI
,[19] The top homology of the lattice of subgroups of a soluble group, Discrete Math. 55 (1985) 291 | DOI
,[20] Rational global homotopy theory and geometric fixed points, PhD thesis, Universität Bonn (2017)
,Cité par Sources :