Symmetric products and subgroup lattices
Geometry & topology, Tome 22 (2018) no. 3, pp. 1547-1591.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

Let G be a finite group. We show that the rational equivariant homotopy groups of symmetric products of the G–equivariant sphere spectrum are naturally isomorphic to the rational homology groups of certain subcomplexes of the subgroup lattice of G.

DOI : 10.2140/gt.2018.22.1547
Classification : 55P42, 55P62, 55P91
Keywords: symmetric products of spheres, global equivariant homotopy theory, subgroup lattices

Hausmann, Markus 1

1 Department of Mathematical Sciences, University of Copenhagen, København, Denmark
@article{GT_2018_22_3_a6,
     author = {Hausmann, Markus},
     title = {Symmetric products and subgroup lattices},
     journal = {Geometry & topology},
     pages = {1547--1591},
     publisher = {mathdoc},
     volume = {22},
     number = {3},
     year = {2018},
     doi = {10.2140/gt.2018.22.1547},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.1547/}
}
TY  - JOUR
AU  - Hausmann, Markus
TI  - Symmetric products and subgroup lattices
JO  - Geometry & topology
PY  - 2018
SP  - 1547
EP  - 1591
VL  - 22
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.1547/
DO  - 10.2140/gt.2018.22.1547
ID  - GT_2018_22_3_a6
ER  - 
%0 Journal Article
%A Hausmann, Markus
%T Symmetric products and subgroup lattices
%J Geometry & topology
%D 2018
%P 1547-1591
%V 22
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.1547/
%R 10.2140/gt.2018.22.1547
%F GT_2018_22_3_a6
Hausmann, Markus. Symmetric products and subgroup lattices. Geometry & topology, Tome 22 (2018) no. 3, pp. 1547-1591. doi : 10.2140/gt.2018.22.1547. http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.1547/

[1] G Arone, A branching rule for partition complexes, preprint (2015)

[2] G Z Arone, D L B Brantner, The action of Young subgroups on the partition complex, preprint (2018)

[3] G Z Arone, W G Dwyer, Partition complexes, Tits buildings and symmetric products, Proc. London Math. Soc. 82 (2001) 229 | DOI

[4] J P C Greenlees, J P May, Generalized Tate cohomology, 543, Amer. Math. Soc. (1995) | DOI

[5] M A Hill, M J Hopkins, D C Ravenel, On the nonexistence of elements of Kervaire invariant one, Ann. of Math. 184 (2016) 1 | DOI

[6] P S Hirschhorn, Model categories and their localizations, 99, Amer. Math. Soc. (2003)

[7] C Kratzer, J Thévenaz, Type d’homotopie des treillis et treillis des sous-groupes d’un groupe fini, Comment. Math. Helv. 60 (1985) 85 | DOI

[8] N J Kuhn, A Kahn–Priddy sequence and a conjecture of G W Whitehead, Math. Proc. Cambridge Philos. Soc. 92 (1982) 467 | DOI

[9] K Lesh, A filtration of spectra arising from families of subgroups of symmetric groups, Trans. Amer. Math. Soc. 352 (2000) 3211 | DOI

[10] M A Mandell, J P May, Equivariant orthogonal spectra and S–modules, 755, Amer. Math. Soc. (2002) | DOI

[11] M A Mandell, J P May, S Schwede, B Shipley, Model categories of diagram spectra, Proc. London Math. Soc. 82 (2001) 441 | DOI

[12] M Nakaoka, Cohomology mod p of symmetric products of spheres, J. Inst. Polytech. Osaka City Univ. Ser. A 9 (1958) 1

[13] P F Dos Santos, A note on the equivariant Dold–Thom theorem, J. Pure Appl. Algebra 183 (2003) 299 | DOI

[14] S Schwede, Equivariant properties of symmetric products, J. Amer. Math. Soc. 30 (2017) 673 | DOI

[15] S Schwede, Global homotopy theory, book project, v0.53 (2017)

[16] S Schwede, B Shipley, Stable model categories are categories of modules, Topology 42 (2003) 103 | DOI

[17] L Solomon, The Steinberg character of a finite group with BN–pair, from: "Theory of finite groups" (editors R Brauer, C H Sah), Benjamin (1969) 213

[18] A Strøm, The homotopy category is a homotopy category, Arch. Math. (Basel) 23 (1972) 435 | DOI

[19] J Thévenaz, The top homology of the lattice of subgroups of a soluble group, Discrete Math. 55 (1985) 291 | DOI

[20] C Wimmer, Rational global homotopy theory and geometric fixed points, PhD thesis, Universität Bonn (2017)

Cité par Sources :