Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
A trisection of a smooth, closed, oriented –manifold is a decomposition into three –dimensional –handlebodies meeting pairwise in –dimensional –handlebodies, with triple intersection a closed surface. The fundamental groups of the surface, the –dimensional handlebodies, the –dimensional handlebodies and the closed –manifold, with homomorphisms between them induced by inclusion, form a commutative diagram of epimorphisms, which we call a trisection of the –manifold group. A trisected –manifold thus gives a trisected group; here we show that every trisected group uniquely determines a trisected –manifold. Together with Gay and Kirby’s existence and uniqueness theorem for –manifold trisections, this gives a bijection from group trisections modulo isomorphism and a certain stabilization operation to smooth, closed, connected, oriented –manifolds modulo diffeomorphism. As a consequence, smooth –manifold topology is, in principle, entirely group-theoretic. For example, the smooth –dimensional Poincaré conjecture can be reformulated as a purely group-theoretic statement.
Abrams, Aaron 1 ; Gay, David 2 ; Kirby, Robion 3
@article{GT_2018_22_3_a5, author = {Abrams, Aaron and Gay, David and Kirby, Robion}, title = {Group trisections and smooth 4{\textendash}manifolds}, journal = {Geometry & topology}, pages = {1537--1545}, publisher = {mathdoc}, volume = {22}, number = {3}, year = {2018}, doi = {10.2140/gt.2018.22.1537}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.1537/} }
TY - JOUR AU - Abrams, Aaron AU - Gay, David AU - Kirby, Robion TI - Group trisections and smooth 4–manifolds JO - Geometry & topology PY - 2018 SP - 1537 EP - 1545 VL - 22 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.1537/ DO - 10.2140/gt.2018.22.1537 ID - GT_2018_22_3_a5 ER -
Abrams, Aaron; Gay, David; Kirby, Robion. Group trisections and smooth 4–manifolds. Geometry & topology, Tome 22 (2018) no. 3, pp. 1537-1545. doi : 10.2140/gt.2018.22.1537. http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.1537/
[1] Trisecting 4–manifolds, Geom. Topol. 20 (2016) 3097 | DOI
, ,[2] 3–Manifolds, 86, Princeton Univ. Press (1976)
,[3] A note on 4–dimensional handlebodies, Bull. Soc. Math. France 100 (1972) 337
, ,[4] The co-rank conjecture for 3–manifold groups, Algebr. Geom. Topol. 2 (2002) 37 | DOI
, ,[5] Classification of trisections and the generalized property R conjecture, Proc. Amer. Math. Soc. 144 (2016) 4983 | DOI
, , ,[6] Genus-two trisections are standard, Geom. Topol. 21 (2017) 1583 | DOI
, ,[7] The geometrization conjecture, 5, Amer. Math. Soc. (2014)
, ,[8] On Dehn’s lemma and the asphericity of knots, Ann. of Math. 66 (1957) 1 | DOI
,[9] Some topological proofs and extensions of Grusko’s theorem, PhD thesis, Princeton University (1959)
,[10] How not to prove the Poincaré conjecture, from: "Topology seminar" (editors R H Bing, R J Bean), Ann. of Math. Stud. 60, Princeton Univ. Press (1966) 83
,[11] Heegaard–Zerlegungen der 3–Sphäre, Topology 7 (1968) 195 | DOI
,Cité par Sources :