Group trisections and smooth 4–manifolds
Geometry & topology, Tome 22 (2018) no. 3, pp. 1537-1545.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

A trisection of a smooth, closed, oriented 4–manifold is a decomposition into three 4–dimensional 1–handlebodies meeting pairwise in 3–dimensional 1–handlebodies, with triple intersection a closed surface. The fundamental groups of the surface, the 3–dimensional handlebodies, the 4–dimensional handlebodies and the closed 4–manifold, with homomorphisms between them induced by inclusion, form a commutative diagram of epimorphisms, which we call a trisection of the 4–manifold group. A trisected 4–manifold thus gives a trisected group; here we show that every trisected group uniquely determines a trisected 4–manifold. Together with Gay and Kirby’s existence and uniqueness theorem for 4–manifold trisections, this gives a bijection from group trisections modulo isomorphism and a certain stabilization operation to smooth, closed, connected, oriented 4–manifolds modulo diffeomorphism. As a consequence, smooth 4–manifold topology is, in principle, entirely group-theoretic. For example, the smooth 4–dimensional Poincaré conjecture can be reformulated as a purely group-theoretic statement.

DOI : 10.2140/gt.2018.22.1537
Classification : 57M05, 20F05
Keywords: trisection, group theory, finitely presented groups, $4$–manifolds, Morse $2$–functions, Heegaard splitting

Abrams, Aaron 1 ; Gay, David 2 ; Kirby, Robion 3

1 Mathematics Department, Washington and Lee University, Lexington, VA, United States
2 Euclid Lab and Department of Mathematics, University of Georgia, Athens, GA, United States
3 Department of Mathematics, University of California, Berkeley, CA, United States
@article{GT_2018_22_3_a5,
     author = {Abrams, Aaron and Gay, David and Kirby, Robion},
     title = {Group trisections and smooth 4{\textendash}manifolds},
     journal = {Geometry & topology},
     pages = {1537--1545},
     publisher = {mathdoc},
     volume = {22},
     number = {3},
     year = {2018},
     doi = {10.2140/gt.2018.22.1537},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.1537/}
}
TY  - JOUR
AU  - Abrams, Aaron
AU  - Gay, David
AU  - Kirby, Robion
TI  - Group trisections and smooth 4–manifolds
JO  - Geometry & topology
PY  - 2018
SP  - 1537
EP  - 1545
VL  - 22
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.1537/
DO  - 10.2140/gt.2018.22.1537
ID  - GT_2018_22_3_a5
ER  - 
%0 Journal Article
%A Abrams, Aaron
%A Gay, David
%A Kirby, Robion
%T Group trisections and smooth 4–manifolds
%J Geometry & topology
%D 2018
%P 1537-1545
%V 22
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.1537/
%R 10.2140/gt.2018.22.1537
%F GT_2018_22_3_a5
Abrams, Aaron; Gay, David; Kirby, Robion. Group trisections and smooth 4–manifolds. Geometry & topology, Tome 22 (2018) no. 3, pp. 1537-1545. doi : 10.2140/gt.2018.22.1537. http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.1537/

[1] D Gay, R Kirby, Trisecting 4–manifolds, Geom. Topol. 20 (2016) 3097 | DOI

[2] J Hempel, 3–Manifolds, 86, Princeton Univ. Press (1976)

[3] F Laudenbach, V Poénaru, A note on 4–dimensional handlebodies, Bull. Soc. Math. France 100 (1972) 337

[4] C J Leininger, A W Reid, The co-rank conjecture for 3–manifold groups, Algebr. Geom. Topol. 2 (2002) 37 | DOI

[5] J Meier, T Schirmer, A Zupan, Classification of trisections and the generalized property R conjecture, Proc. Amer. Math. Soc. 144 (2016) 4983 | DOI

[6] J Meier, A Zupan, Genus-two trisections are standard, Geom. Topol. 21 (2017) 1583 | DOI

[7] J Morgan, G Tian, The geometrization conjecture, 5, Amer. Math. Soc. (2014)

[8] C D Papakyriakopoulos, On Dehn’s lemma and the asphericity of knots, Ann. of Math. 66 (1957) 1 | DOI

[9] J R Stallings, Some topological proofs and extensions of Grusko’s theorem, PhD thesis, Princeton University (1959)

[10] J Stallings, How not to prove the Poincaré conjecture, from: "Topology seminar" (editors R H Bing, R J Bean), Ann. of Math. Stud. 60, Princeton Univ. Press (1966) 83

[11] F Waldhausen, Heegaard–Zerlegungen der 3–Sphäre, Topology 7 (1968) 195 | DOI

Cité par Sources :