Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We study periodic wind-tree models, that is, billiards in the plane endowed with –periodically located identical connected symmetric right-angled obstacles. We give asymptotic formulas for the number of (isotopy classes of) closed billiard trajectories (up to –translations) on the wind-tree billiard. We also explicitly compute the associated Siegel–Veech constant for generic wind-tree billiards depending on the number of corners on the obstacle.
Pardo, Angel 1
@article{GT_2018_22_3_a4, author = {Pardo, Angel}, title = {Counting problem on wind-tree models}, journal = {Geometry & topology}, pages = {1483--1536}, publisher = {mathdoc}, volume = {22}, number = {3}, year = {2018}, doi = {10.2140/gt.2018.22.1483}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.1483/} }
Pardo, Angel. Counting problem on wind-tree models. Geometry & topology, Tome 22 (2018) no. 3, pp. 1483-1536. doi : 10.2140/gt.2018.22.1483. http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.1483/
[1] Right-angled billiards and volumes of moduli spaces of quadratic differentials on CP1, Ann. Sci. Éc. Norm. Supér. 49 (2016) 1311 | DOI
, , ,[2] Recurrence for the wind-tree model, (2013)
, ,[3] Configurations of saddle connections of quadratic differentials on CP1 and on hyperelliptic Riemann surfaces, Comment. Math. Helv. 84 (2009) 757 | DOI
,[4] Every flat surface is Birkhoff and Oseledets generic in almost every direction, J. Mod. Dyn. 9 (2015) 1 | DOI
, ,[5] Examples of recurrent or transient stationary walks in Rd over a rotation of T2, from: "Ergodic theory" (editor I Assani), Contemp. Math. 485, Amer. Math. Soc. (2009) 71 | DOI
, ,[6] Divergent trajectories in the periodic wind-tree model, J. Mod. Dyn. 7 (2013) 1 | DOI
,[7] Diffusion for the periodic wind-tree model, Ann. Sci. Éc. Norm. Supér. 47 (2014) 1085 | DOI
, , ,[8] Cries and whispers in wind-tree forests, preprint (2015)
, ,[9] Begriffliche Grundlagen der statistischen Auffassung in der Mechanik, IV 2 II, Heft 6, Art. 32 (1912)
, ,[10] Sum of Lyapunov exponents of the Hodge bundle with respect to the Teichmüller geodesic flow, Publ. Math. Inst. Hautes Études Sci. 120 (2014) 207 | DOI
, , ,[11] Unipotent flows on the space of branched covers of Veech surfaces, Ergodic Theory Dynam. Systems 26 (2006) 129 | DOI
, , ,[12] Asymptotic formulas on flat surfaces, Ergodic Theory Dynam. Systems 21 (2001) 443 | DOI
, ,[13] Billiards in rectangles with barriers, Duke Math. J. 118 (2003) 427 | DOI
, , ,[14] Moduli spaces of abelian differentials : the principal boundary, counting problems, and the Siegel–Veech constants, Publ. Math. Inst. Hautes Études Sci. 97 (2003) 61 | DOI
, , ,[15] Invariant and stationary measures for the SL(2, R) action on moduli space, preprint (2013)
, ,[16] Isolation, equidistribution, and orbit closures for the SL(2, R) action on moduli space, Ann. of Math. 182 (2015) 673 | DOI
, , ,[17] A geometric criterion for the nonuniform hyperbolicity of the Kontsevich–Zorich cocycle, J. Mod. Dyn. 5 (2011) 355 | DOI
,[18] Introduction to Teichmüller theory and its applications to dynamics of interval exchange transformations, flows on surfaces and billiards, J. Mod. Dyn. 8 (2014) 271 | DOI
, ,[19] Lyapunov spectrum of invariant subbundles of the Hodge bundle, Ergodic Theory Dynam. Systems 34 (2014) 353 | DOI
, , ,[20] Non-ergodic Z–periodic billiards and infinite translation surfaces, Invent. Math. 197 (2014) 241 | DOI
, ,[21] Siegel–Veech constants for strata of moduli spaces of quadratic differentials, Geom. Funct. Anal. 25 (2015) 1440 | DOI
,[22] Combinatorial identities, Henry W Gould (1972)
,[23] Affine mappings of translation surfaces: geometry and arithmetic, Duke Math. J. 103 (2000) 191 | DOI
, ,[24] Diffusion in a periodic wind-tree model, J. Math. Phys. 21 (1980) 1802 | DOI
, ,[25] Interval exchange transformations and measured foliations, Ann. of Math. 115 (1982) 169 | DOI
,[26] Lower bounds for the number of saddle connections and closed trajectories of a quadratic differential, from: "Holomorphic functions and moduli, I" (editors D Drasin, C J Earle, F W Gehring, I Kra, A Marden), Math. Sci. Res. Inst. Publ. 10, Springer (1988) 215 | DOI
,[27] The growth rate of trajectories of a quadratic differential, Ergodic Theory Dynam. Systems 10 (1990) 151 | DOI
,[28] Multiple saddle connections on flat surfaces and the principal boundary of the moduli spaces of quadratic differentials, Geom. Funct. Anal. 18 (2008) 919 | DOI
, ,[29] On the asymptotic quadratic growth rate of saddle connections and periodic orbits on marked flat tori, Geom. Funct. Anal. 12 (2002) 622 | DOI
,[30] Gauss measures for transformations on the space of interval exchange maps, Ann. of Math. 115 (1982) 201 | DOI
,[31] Teichmüller curves in moduli space, Eisenstein series and an application to triangular billiards, Invent. Math. 97 (1989) 553 | DOI
,[32] The billiard in a regular polygon, Geom. Funct. Anal. 2 (1992) 341 | DOI
,[33] Siegel measures, Ann. of Math. 148 (1998) 895 | DOI
,[34] Ergodicity of billiards in polygons, Mat. Sb. 188 (1997) 65
,[35] Periodic geodesics on generic translation surfaces, from: "Algebraic and topological dynamics" (editors S Kolyada, Y Manin, T Ward), Contemp. Math. 385, Amer. Math. Soc. (2005) 205 | DOI
,[36] Translation surfaces and their orbit closures: an introduction for a broad audience, EMS Surv. Math. Sci. 2 (2015) 63 | DOI
,[37] Flat surfaces, from: "Frontiers in number theory, physics, and geometry, I" (editors P Cartier, B Julia, P Moussa, P Vanhove), Springer (2006) 437 | DOI
,Cité par Sources :