Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We propose and prove a mirror theorem for the elliptic quasimap invariants of smooth Calabi–Yau complete intersections in projective spaces. This theorem, combined with the wall-crossing formula of Ciocan-Fontanine and Kim, implies mirror theorems of Zinger and Popa for the elliptic Gromov–Witten invariants of those varieties. This paper and the wall-crossing formula provide a unified framework for the mirror theory of rational and elliptic Gromov–Witten invariants.
Kim, Bumsig 1 ; Lho, Hyenho 2
@article{GT_2018_22_3_a3, author = {Kim, Bumsig and Lho, Hyenho}, title = {Mirror theorem for elliptic quasimap invariants}, journal = {Geometry & topology}, pages = {1459--1481}, publisher = {mathdoc}, volume = {22}, number = {3}, year = {2018}, doi = {10.2140/gt.2018.22.1459}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.1459/} }
TY - JOUR AU - Kim, Bumsig AU - Lho, Hyenho TI - Mirror theorem for elliptic quasimap invariants JO - Geometry & topology PY - 2018 SP - 1459 EP - 1481 VL - 22 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.1459/ DO - 10.2140/gt.2018.22.1459 ID - GT_2018_22_3_a3 ER -
Kim, Bumsig; Lho, Hyenho. Mirror theorem for elliptic quasimap invariants. Geometry & topology, Tome 22 (2018) no. 3, pp. 1459-1481. doi : 10.2140/gt.2018.22.1459. http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.1459/
[1] Moduli stacks of stable toric quasimaps, Adv. Math. 225 (2010) 3022 | DOI
, ,[2] Wall-crossing in genus zero quasimap theory and mirror maps, Algebr. Geom. 1 (2014) 400 | DOI
, ,[3] Big I–functions, from: "Development of moduli theory—Kyoto 2013" (editors O Fujino, S Kondō, A Moriwaki, M H Saito, K Yoshioka), Adv. Stud. Pure Math. 69, Math. Soc. Japan (2016) 323
, ,[4] Quasimap wall-crossings and mirror symmetry, preprint (2016)
, ,[5] Higher genus quasimap wall-crossing for semipositive targets, J. Eur. Math. Soc. JEMS 19 (2017) 2051 | DOI
, ,[6] Stable quasimaps to GIT quotients, J. Geom. Phys. 75 (2014) 17 | DOI
, , ,[7] Equivariant Gromov–Witten invariants, Internat. Math. Res. Notices (1996) 613 | DOI
,[8] Elliptic Gromov–Witten invariants and the generalized mirror conjecture, from: "Integrable systems and algebraic geometry" (editors M H Saito, Y Shimizu, K Ueno), World Scientific (1998) 107
,[9] Functoriality in intersection theory and a conjecture of Cox, Katz, and Lee, J. Pure Appl. Algebra 179 (2003) 127 | DOI
, , ,[10] The moduli space of stable quotients, Geom. Topol. 15 (2011) 1651 | DOI
, , ,[11] The genus one Gromov–Witten invariants of Calabi–Yau complete intersections, Trans. Amer. Math. Soc. 365 (2013) 1149 | DOI
,[12] The reduced genus 1 Gromov–Witten invariants of Calabi–Yau hypersurfaces, J. Amer. Math. Soc. 22 (2009) 691 | DOI
,Cité par Sources :