Mirror theorem for elliptic quasimap invariants
Geometry & topology, Tome 22 (2018) no. 3, pp. 1459-1481.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We propose and prove a mirror theorem for the elliptic quasimap invariants of smooth Calabi–Yau complete intersections in projective spaces. This theorem, combined with the wall-crossing formula of Ciocan-Fontanine and Kim, implies mirror theorems of Zinger and Popa for the elliptic Gromov–Witten invariants of those varieties. This paper and the wall-crossing formula provide a unified framework for the mirror theory of rational and elliptic Gromov–Witten invariants.

DOI : 10.2140/gt.2018.22.1459
Classification : 14N35, 14D23
Keywords: mirror theorem, elliptic quasimap invariants, elliptic Gromov-Witten invariants

Kim, Bumsig 1 ; Lho, Hyenho 2

1 School of Mathematics, Korea Institute for Advanced Study, Seoul, South Korea
2 Department of Mathematics, ETH, Zürich, Switzerland
@article{GT_2018_22_3_a3,
     author = {Kim, Bumsig and Lho, Hyenho},
     title = {Mirror theorem for elliptic quasimap invariants},
     journal = {Geometry & topology},
     pages = {1459--1481},
     publisher = {mathdoc},
     volume = {22},
     number = {3},
     year = {2018},
     doi = {10.2140/gt.2018.22.1459},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.1459/}
}
TY  - JOUR
AU  - Kim, Bumsig
AU  - Lho, Hyenho
TI  - Mirror theorem for elliptic quasimap invariants
JO  - Geometry & topology
PY  - 2018
SP  - 1459
EP  - 1481
VL  - 22
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.1459/
DO  - 10.2140/gt.2018.22.1459
ID  - GT_2018_22_3_a3
ER  - 
%0 Journal Article
%A Kim, Bumsig
%A Lho, Hyenho
%T Mirror theorem for elliptic quasimap invariants
%J Geometry & topology
%D 2018
%P 1459-1481
%V 22
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.1459/
%R 10.2140/gt.2018.22.1459
%F GT_2018_22_3_a3
Kim, Bumsig; Lho, Hyenho. Mirror theorem for elliptic quasimap invariants. Geometry & topology, Tome 22 (2018) no. 3, pp. 1459-1481. doi : 10.2140/gt.2018.22.1459. http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.1459/

[1] I Ciocan-Fontanine, B Kim, Moduli stacks of stable toric quasimaps, Adv. Math. 225 (2010) 3022 | DOI

[2] I Ciocan-Fontanine, B Kim, Wall-crossing in genus zero quasimap theory and mirror maps, Algebr. Geom. 1 (2014) 400 | DOI

[3] I Ciocan-Fontanine, B Kim, Big I–functions, from: "Development of moduli theory—Kyoto 2013" (editors O Fujino, S Kondō, A Moriwaki, M H Saito, K Yoshioka), Adv. Stud. Pure Math. 69, Math. Soc. Japan (2016) 323

[4] I Ciocan-Fontanine, B Kim, Quasimap wall-crossings and mirror symmetry, preprint (2016)

[5] I Ciocan-Fontanine, B Kim, Higher genus quasimap wall-crossing for semipositive targets, J. Eur. Math. Soc. JEMS 19 (2017) 2051 | DOI

[6] I Ciocan-Fontanine, B Kim, D Maulik, Stable quasimaps to GIT quotients, J. Geom. Phys. 75 (2014) 17 | DOI

[7] A B Givental, Equivariant Gromov–Witten invariants, Internat. Math. Res. Notices (1996) 613 | DOI

[8] A Givental, Elliptic Gromov–Witten invariants and the generalized mirror conjecture, from: "Integrable systems and algebraic geometry" (editors M H Saito, Y Shimizu, K Ueno), World Scientific (1998) 107

[9] B Kim, A Kresch, T Pantev, Functoriality in intersection theory and a conjecture of Cox, Katz, and Lee, J. Pure Appl. Algebra 179 (2003) 127 | DOI

[10] A Marian, D Oprea, R Pandharipande, The moduli space of stable quotients, Geom. Topol. 15 (2011) 1651 | DOI

[11] A Popa, The genus one Gromov–Witten invariants of Calabi–Yau complete intersections, Trans. Amer. Math. Soc. 365 (2013) 1149 | DOI

[12] A Zinger, The reduced genus 1 Gromov–Witten invariants of Calabi–Yau hypersurfaces, J. Amer. Math. Soc. 22 (2009) 691 | DOI

Cité par Sources :