Orderability and Dehn filling
Geometry & topology, Tome 22 (2018) no. 3, pp. 1405-1457.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

Motivated by conjectures relating group orderability, Floer homology and taut foliations, we discuss a systematic and broadly applicable technique for constructing left-orders on the fundamental groups of rational homology 3–spheres. Specifically, for a compact 3–manifold M with torus boundary, we give several criteria which imply that whole intervals of Dehn fillings of M have left-orderable fundamental groups. Our technique uses certain representations from π1(M) into PSL2 ˜, which we organize into an infinite graph in H1(M; ) called the translation extension locus. We include many plots of such loci which inform the proofs of our main results and suggest interesting avenues for future research.

DOI : 10.2140/gt.2018.22.1405
Classification : 57M60, 57M25, 57M05, 20F60
Keywords: orderable groups, Dehn filling

Culler, Marc 1 ; Dunfield, Nathan 2

1 Department of Mathematics, Statistics and Computer Science, University of Illinois at Chicago, Chicago, IL, United States
2 Department of Mathematics, University of Illinois at Urbana-Champaign, Urbana, IL, United States
@article{GT_2018_22_3_a2,
     author = {Culler, Marc and Dunfield, Nathan},
     title = {Orderability and {Dehn} filling},
     journal = {Geometry & topology},
     pages = {1405--1457},
     publisher = {mathdoc},
     volume = {22},
     number = {3},
     year = {2018},
     doi = {10.2140/gt.2018.22.1405},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.1405/}
}
TY  - JOUR
AU  - Culler, Marc
AU  - Dunfield, Nathan
TI  - Orderability and Dehn filling
JO  - Geometry & topology
PY  - 2018
SP  - 1405
EP  - 1457
VL  - 22
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.1405/
DO  - 10.2140/gt.2018.22.1405
ID  - GT_2018_22_3_a2
ER  - 
%0 Journal Article
%A Culler, Marc
%A Dunfield, Nathan
%T Orderability and Dehn filling
%J Geometry & topology
%D 2018
%P 1405-1457
%V 22
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.1405/
%R 10.2140/gt.2018.22.1405
%F GT_2018_22_3_a2
Culler, Marc; Dunfield, Nathan. Orderability and Dehn filling. Geometry & topology, Tome 22 (2018) no. 3, pp. 1405-1457. doi : 10.2140/gt.2018.22.1405. http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.1405/

[1] S Basu, R Pollack, M F Roy, Algorithms in real algebraic geometry, 10, Springer (2006)

[2] A F Beardon, The geometry of discrete groups, 91, Springer (1983) | DOI

[3] M Bell, Flipper, version 0.9.8 (2015)

[4] I Biswas, S Lawton, D Ramras, Fundamental groups of character varieties: surfaces and tori, Math. Z. 281 (2015) 415 | DOI

[5] J Bowden, Approximating C0–foliations by contact structures, Geom. Funct. Anal. 26 (2016) 1255 | DOI

[6] S Boyer, A Clay, Foliations, orders, representations, L–spaces and graph manifolds, Adv. Math. 310 (2017) 159 | DOI

[7] S Boyer, C M Gordon, L Watson, On L–spaces and left-orderable fundamental groups, Math. Ann. 356 (2013) 1213 | DOI

[8] S Boyer, D Rolfsen, B Wiest, Orderable 3–manifold groups, Ann. Inst. Fourier Grenoble 55 (2005) 243 | DOI

[9] S Boyer, X Zhang, On Culler–Shalen seminorms and Dehn filling, Ann. of Math. 148 (1998) 737 | DOI

[10] G E Bredon, Introduction to compact transformation groups, 46, Academic Press (1972)

[11] B A Burton, The cusped hyperbolic census is complete, preprint (2014)

[12] B A Burton, R Budney, W Pettersson, Et Al., Regina : software for 3–manifold topology and normal surface theory, (2014)

[13] D Calegari, Real places and torus bundles, Geom. Dedicata 118 (2006) 209 | DOI

[14] D Calegari, scl, 20, Mathematical Society of Japan (2009) | DOI

[15] D Calegari, N M Dunfield, Laminations and groups of homeomorphisms of the circle, Invent. Math. 152 (2003) 149 | DOI

[16] D Calegari, A Walker, Ziggurats and rotation numbers, J. Mod. Dyn. 5 (2011) 711 | DOI

[17] P J Callahan, M V Hildebrand, J R Weeks, A census of cusped hyperbolic 3–manifolds, Math. Comp. 68 (1999) 321 | DOI

[18] A Champanerkar, I Kofman, T Mullen, The 500 simplest hyperbolic knots, J. Knot Theory Ramifications 23 (2014) | DOI

[19] A Champanerkar, I Kofman, E Patterson, The next simplest hyperbolic knots, J. Knot Theory Ramifications 13 (2004) 965 | DOI

[20] F Charles, B Poonen, Bertini irreducibility theorems over finite fields, J. Amer. Math. Soc. 29 (2016) 81 | DOI

[21] A Clay, D Rolfsen, Ordered groups and topology, 176, Amer. Math. Soc. (2016)

[22] D Cooper, M Culler, H Gillet, D D Long, P B Shalen, Plane curves associated to character varieties of 3–manifolds, Invent. Math. 118 (1994) 47 | DOI

[23] D Cooper, D D Long, Remarks on the A–polynomial of a knot, J. Knot Theory Ramifications 5 (1996) 609 | DOI

[24] M Culler, N M Dunfield, M Goerner, J R Weeks, SnapPy, a computer program for studying the topology and geometry of 3–manifolds,

[25] M Culler, P B Shalen, Varieties of group representations and splittings of 3–manifolds, Ann. of Math. 117 (1983) 109 | DOI

[26] N M Dunfield, Cyclic surgery, degrees of maps of character curves, and volume rigidity for hyperbolic manifolds, Invent. Math. 136 (1999) 623 | DOI

[27] N M Dunfield, The Mahler measure of the A–polynomial of m129(0,3), preprint (2003)

[28] N M Dunfield, Floer homology, orderable groups, and taut foliations of hyperbolic 3–manifolds : an experimental study, workshop talk (2015)

[29] N M Dunfield, D P Thurston, A random tunnel number one 3–manifold does not fiber over the circle, Geom. Topol. 10 (2006) 2431 | DOI

[30] D Eisenbud, U Hirsch, W Neumann, Transverse foliations of Seifert bundles and self-homeomorphism of the circle, Comment. Math. Helv. 56 (1981) 638 | DOI

[31] D Gabai, Foliations and the topology of 3–manifolds, III, J. Differential Geom. 26 (1987) 479 | DOI

[32] É Ghys, Groups acting on the circle, Enseign. Math. 47 (2001) 329

[33] M Goerner, Trace field data for SnapPy manifolds, database (2015)

[34] C M Gordon, Riley’s conjecture on SL(2, R) representations of 2–bridge knots, J. Knot Theory Ramifications 26 (2017) | DOI

[35] C Gordon, T Lidman, Taut foliations, left-orderability, and cyclic branched covers, Acta Math. Vietnam. 39 (2014) 599 | DOI

[36] C M Gordon, J Luecke, Reducible manifolds and Dehn surgery, Topology 35 (1996) 385 | DOI

[37] R Hakamata, M Teragaito, Left-orderable fundamental groups and Dehn surgery on genus one 2–bridge knots, Algebr. Geom. Topol. 14 (2014) 2125 | DOI

[38] J Hanselman, J Rasmussen, S D Rasmussen, L Watson, Taut foliations on graph manifolds, preprint (2015)

[39] M Heusener, J Porti, The variety of characters in PSL2(C), Bol. Soc. Mat. Mexicana 10 (2004) 221

[40] M Heusener, J Porti, Deformations of reducible representations of 3–manifold groups into PSL2(C), Algebr. Geom. Topol. 5 (2005) 965 | DOI

[41] J Hoste, M Thistlethwaite, J Weeks, The first 1,701,936 knots, Math. Intelligencer 20 (1998) 33 | DOI

[42] Y Hu, Left-orderability and cyclic branched coverings, Algebr. Geom. Topol. 15 (2015) 399 | DOI

[43] M Jankins, W D Neumann, Rotation numbers of products of circle homeomorphisms, Math. Ann. 271 (1985) 381 | DOI

[44] W H Kazez, R Roberts, C0 approximations of foliations, preprint (2015)

[45] V T Khoi, A cut-and-paste method for computing the Seifert volumes, Math. Ann. 326 (2003) 759 | DOI

[46] J Konvalina, V Matache, Palindrome-polynomials with roots on the unit circle, C. R. Math. Acad. Sci. Soc. R. Can. 26 (2004) 39

[47] H Kraft, T Petrie, J D Randall, Quotient varieties, Adv. Math. 74 (1989) 145 | DOI

[48] T Lidman, L Watson, Nonfibered L–space knots, Pacific J. Math. 267 (2014) 423 | DOI

[49] C Maclachlan, A W Reid, The arithmetic of hyperbolic 3–manifolds, 219, Springer (2003) | DOI

[50] K Mann, Rigidity and flexibility of group actions on the circle, preprint (2015)

[51] R Naimi, Foliations transverse to fibers of Seifert manifolds, Comment. Math. Helv. 69 (1994) 155 | DOI

[52] P Ozsváth, Z Szabó, Holomorphic disks and genus bounds, Geom. Topol. 8 (2004) 311 | DOI

[53] P Ozsváth, Z Szabó, On knot Floer homology and lens space surgeries, Topology 44 (2005) 1281 | DOI

[54] J Porti, Torsion de Reidemeister pour les variétés hyperboliques, 612, Amer. Math. Soc. (1997) | DOI

[55] J Rasmussen, S D Rasmussen, Floer simple manifolds and L–space intervals, preprint (2015)

[56] R Roberts, Taut foliations in punctured surface bundles, II, Proc. London Math. Soc. 83 (2001) 443 | DOI

[57] H Segerman, A generalisation of the deformation variety, Algebr. Geom. Topol. 12 (2012) 2179 | DOI

[58] W P Thurston, A norm for the homology of 3–manifolds, Mem. Amer. Math. Soc. 339, Amer. Math. Soc. (1986) 99 | DOI

[59] W P Thurston, Three-manifolds, foliations and circles, I, preprint (1997)

[60] S Tillmann, Degenerations of ideal hyperbolic triangulations, Math. Z. 272 (2012) 793 | DOI

[61] A T Tran, On left-orderability and cyclic branched coverings, J. Math. Soc. Japan 67 (2015) 1169 | DOI

[62] A T Tran, On left-orderable fundamental groups and Dehn surgeries on knots, J. Math. Soc. Japan 67 (2015) 319 | DOI

[63] J Verschelde, Algorithm 795 : PHCpack : a general-purpose solver for polynomial systems by homotopy continuation, ACM Trans. Math. Softw. 25 (1999) 251 | DOI

[64] J Verschelde, Et Al., PHCpack: solving polynomial systems via homotopy continuation, (1999–2015)

Cité par Sources :