We study a properly convex real projective manifold with (possibly empty) compact, strictly convex boundary, and which consists of a compact part plus finitely many convex ends. We extend a theorem of Koszul, which asserts that for a compact manifold without boundary the holonomies of properly convex structures form an open subset of the representation variety. We also give a relative version for noncompact (G,X) manifolds of the openness of their holonomies.
Keywords: projective structure, deformation, cusp, properly convex
Cooper, Daryl 1 ; Long, Darren 1 ; Tillmann, Stephan 2
@article{10_2140_gt_2018_22_1349,
author = {Cooper, Daryl and Long, Darren and Tillmann, Stephan},
title = {Deforming convex projective manifolds},
journal = {Geometry & topology},
pages = {1349--1404},
year = {2018},
volume = {22},
number = {3},
doi = {10.2140/gt.2018.22.1349},
url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.1349/}
}
TY - JOUR AU - Cooper, Daryl AU - Long, Darren AU - Tillmann, Stephan TI - Deforming convex projective manifolds JO - Geometry & topology PY - 2018 SP - 1349 EP - 1404 VL - 22 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.1349/ DO - 10.2140/gt.2018.22.1349 ID - 10_2140_gt_2018_22_1349 ER -
Cooper, Daryl; Long, Darren; Tillmann, Stephan. Deforming convex projective manifolds. Geometry & topology, Tome 22 (2018) no. 3, pp. 1349-1404. doi: 10.2140/gt.2018.22.1349
[1] , , A combination theorem for convex hyperbolic manifolds, with applications to surfaces in 3–manifolds, J. Topol. 1 (2008) 603 | DOI
[2] , Finite volume properly convex deformations of the figure-eight knot, Geom. Dedicata 178 (2015) 49 | DOI
[3] , , , Generalized cusps in real projective manifolds: classification, preprint (2017)
[4] , Convexes divisibles, IV : Structure du bord en dimension 3, Invent. Math. 164 (2006) 249 | DOI
[5] , Sur les variétés localement affines et localement projectives, Bull. Soc. Math. France 88 (1960) 229
[6] , , , Notes on notes of Thurston, from: "Analytical and geometric aspects of hyperbolic space" (editor D B A Epstein), London Math. Soc. Lecture Note Ser. 111, Cambridge Univ. Press (1987) 3
[7] , Geometric structures on orbifolds and holonomy representations, Geom. Dedicata 104 (2004) 161 | DOI
[8] , The convex real projective orbifolds with radial or totally geodesic ends: the closedness and openness of deformations, preprint (2010)
[9] , The classification of ends of properly convex real projective orbifolds, II: Properly convex radial ends and totally geodesic ends, preprint (2015)
[10] , , , , , , , , , , The Ricci flow : techniques and applications, III : Geometric-analytic aspects, 163, Amer. Math. Soc. (2010) | DOI
[11] , , , Limits of geometries, preprint (2014)
[12] , , A generalization of the Epstein–Penner construction to projective manifolds, Proc. Amer. Math. Soc. 143 (2015) 4561 | DOI
[13] , , , On convex projective manifolds and cusps, Adv. Math. 277 (2015) 181 | DOI
[14] , , Un lemme de Kazhdan–Margulis–Zassenhaus pour les géométries de Hilbert, Ann. Math. Blaise Pascal 20 (2013) 363 | DOI
[15] , , Finitude géométrique en géométrie de Hilbert, Ann. Inst. Fourier Grenoble 64 (2014) 2299 | DOI
[16] , , Analysis on symmetric cones, Clarendon (1994)
[17] , Geometric structures on manifolds and varieties of representations, from: "Geometry of group representations" (editors W M Goldman, A R Magid), Contemp. Math. 74, Amer. Math. Soc. (1988) 169 | DOI
[18] , Geometric structures on manifolds, book project (2016)
[19] , , Approximation theorems, C∞ convex exhaustions and manifolds of positive curvature, Bull. Amer. Math. Soc. 81 (1975) 101 | DOI
[20] , , C∞ convex functions and manifolds of positive curvature, Acta Math. 137 (1976) 209 | DOI
[21] , Differential topology, 33, Springer (1976) | DOI
[22] , , Smoothings of piecewise linear manifolds, 80, Princeton Univ. Press (1974)
[23] , Positivitätsbereiche im Rn, Amer. J. Math. 79 (1957) 575 | DOI
[24] , Variétés localement plates et convexité, Osaka J. Math. 2 (1965) 285
[25] , Déformations de connexions localement plates, Ann. Inst. Fourier Grenoble 18 (1968) 103 | DOI
[26] , A classification of subgroups of SL(4, R) isomorphic to R3 and generalized cusps in projective 3 manifolds, Topology Appl. 206 (2016) 241 | DOI
[27] , On the local triviality of the restriction map for embeddings, Comment. Math. Helv. 38 (1964) 163 | DOI
[28] , Espace des modules marqués des surfaces projectives convexes de volume fini, Geom. Topol. 14 (2010) 2103 | DOI
[29] , Surface projective convexe de volume fini, Ann. Inst. Fourier Grenoble 62 (2012) 325 | DOI
[30] , Around groups in Hilbert geometry, from: "Handbook of Hilbert geometry" (editors A Papadopoulos, M Troyanov), IRMA Lect. Math. Theor. Phys. 22, Eur. Math. Soc. (2014) 207 | DOI
[31] , , Harmonic symmetrization of convex sets and of Finsler structures, with applications to Hilbert geometry, Expo. Math. 27 (2009) 109 | DOI
[32] , , Lectures on differential geometry, 1, International (1994)
[33] , The geometry of Hessian structures, World Sci. (2007) | DOI
[34] , , Geometry of Hessian manifolds, Differential Geom. Appl. 7 (1997) 277 | DOI
[35] , Counterexamples to smoothing convex functions, Canad. Math. Bull. 29 (1986) 308 | DOI
[36] , Exhaustion functions on complete manifolds, from: "Recent advances in geometric analysis" (editors Y I Lee, C S Lin, M P Tsui), Adv. Lect. Math. 11, International (2010) 211
[37] , The geometry and topology of three-manifolds, lecture notes (1979)
[38] , The theory of homogeneous convex cones, Trudy Moskov. Mat. Obšč. 12 (1963) 303
[39] , On C1–complexes, Ann. of Math. 41 (1940) 809 | DOI
[40] , Superrigidity of lattices in solvable Lie groups, Invent. Math. 122 (1995) 147 | DOI
Cité par Sources :