Deforming convex projective manifolds
Geometry & topology, Tome 22 (2018) no. 3, pp. 1349-1404 Cet article a éte moissonné depuis la source Mathematical Sciences Publishers

Voir la notice de l'article

We study a properly convex real projective manifold with (possibly empty) compact, strictly convex boundary, and which consists of a compact part plus finitely many convex ends. We extend a theorem of Koszul, which asserts that for a compact manifold without boundary the holonomies of properly convex structures form an open subset of the representation variety. We also give a relative version for noncompact (G,X) manifolds of the openness of their holonomies.

DOI : 10.2140/gt.2018.22.1349
Classification : 57N16, 57M50
Keywords: projective structure, deformation, cusp, properly convex

Cooper, Daryl 1 ; Long, Darren 1 ; Tillmann, Stephan 2

1 Department of Mathematics, University of California, Santa Barbara, CA, United States
2 School of Mathematics and Statistics, The University of Sydney, Sydney, NSW, Australia
@article{10_2140_gt_2018_22_1349,
     author = {Cooper, Daryl and Long, Darren and Tillmann, Stephan},
     title = {Deforming convex projective manifolds},
     journal = {Geometry & topology},
     pages = {1349--1404},
     year = {2018},
     volume = {22},
     number = {3},
     doi = {10.2140/gt.2018.22.1349},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.1349/}
}
TY  - JOUR
AU  - Cooper, Daryl
AU  - Long, Darren
AU  - Tillmann, Stephan
TI  - Deforming convex projective manifolds
JO  - Geometry & topology
PY  - 2018
SP  - 1349
EP  - 1404
VL  - 22
IS  - 3
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.1349/
DO  - 10.2140/gt.2018.22.1349
ID  - 10_2140_gt_2018_22_1349
ER  - 
%0 Journal Article
%A Cooper, Daryl
%A Long, Darren
%A Tillmann, Stephan
%T Deforming convex projective manifolds
%J Geometry & topology
%D 2018
%P 1349-1404
%V 22
%N 3
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.1349/
%R 10.2140/gt.2018.22.1349
%F 10_2140_gt_2018_22_1349
Cooper, Daryl; Long, Darren; Tillmann, Stephan. Deforming convex projective manifolds. Geometry & topology, Tome 22 (2018) no. 3, pp. 1349-1404. doi: 10.2140/gt.2018.22.1349

[1] M Baker, D Cooper, A combination theorem for convex hyperbolic manifolds, with applications to surfaces in 3–manifolds, J. Topol. 1 (2008) 603 | DOI

[2] S A Ballas, Finite volume properly convex deformations of the figure-eight knot, Geom. Dedicata 178 (2015) 49 | DOI

[3] S Ballas, D Cooper, A Leitner, Generalized cusps in real projective manifolds: classification, preprint (2017)

[4] Y Benoist, Convexes divisibles, IV : Structure du bord en dimension 3, Invent. Math. 164 (2006) 249 | DOI

[5] J P Benzécri, Sur les variétés localement affines et localement projectives, Bull. Soc. Math. France 88 (1960) 229

[6] R D Canary, D B A Epstein, P Green, Notes on notes of Thurston, from: "Analytical and geometric aspects of hyperbolic space" (editor D B A Epstein), London Math. Soc. Lecture Note Ser. 111, Cambridge Univ. Press (1987) 3

[7] S Choi, Geometric structures on orbifolds and holonomy representations, Geom. Dedicata 104 (2004) 161 | DOI

[8] S Choi, The convex real projective orbifolds with radial or totally geodesic ends: the closedness and openness of deformations, preprint (2010)

[9] S Choi, The classification of ends of properly convex real projective orbifolds, II: Properly convex radial ends and totally geodesic ends, preprint (2015)

[10] B Chow, S C Chu, D Glickenstein, C Guenther, J Isenberg, T Ivey, D Knopf, P Lu, F Luo, L Ni, The Ricci flow : techniques and applications, III : Geometric-analytic aspects, 163, Amer. Math. Soc. (2010) | DOI

[11] D Cooper, J Danciger, A Wienhard, Limits of geometries, preprint (2014)

[12] D Cooper, D D Long, A generalization of the Epstein–Penner construction to projective manifolds, Proc. Amer. Math. Soc. 143 (2015) 4561 | DOI

[13] D Cooper, D D Long, S Tillmann, On convex projective manifolds and cusps, Adv. Math. 277 (2015) 181 | DOI

[14] M Crampon, L Marquis, Un lemme de Kazhdan–Margulis–Zassenhaus pour les géométries de Hilbert, Ann. Math. Blaise Pascal 20 (2013) 363 | DOI

[15] M Crampon, L Marquis, Finitude géométrique en géométrie de Hilbert, Ann. Inst. Fourier Grenoble 64 (2014) 2299 | DOI

[16] J Faraut, A Korányi, Analysis on symmetric cones, Clarendon (1994)

[17] W M Goldman, Geometric structures on manifolds and varieties of representations, from: "Geometry of group representations" (editors W M Goldman, A R Magid), Contemp. Math. 74, Amer. Math. Soc. (1988) 169 | DOI

[18] W Goldman, Geometric structures on manifolds, book project (2016)

[19] R E Greene, H Wu, Approximation theorems, C∞ convex exhaustions and manifolds of positive curvature, Bull. Amer. Math. Soc. 81 (1975) 101 | DOI

[20] R E Greene, H Wu, C∞ convex functions and manifolds of positive curvature, Acta Math. 137 (1976) 209 | DOI

[21] M W Hirsch, Differential topology, 33, Springer (1976) | DOI

[22] M W Hirsch, B Mazur, Smoothings of piecewise linear manifolds, 80, Princeton Univ. Press (1974)

[23] M Koecher, Positivitätsbereiche im Rn, Amer. J. Math. 79 (1957) 575 | DOI

[24] J L Koszul, Variétés localement plates et convexité, Osaka J. Math. 2 (1965) 285

[25] J L Koszul, Déformations de connexions localement plates, Ann. Inst. Fourier Grenoble 18 (1968) 103 | DOI

[26] A Leitner, A classification of subgroups of SL(4, R) isomorphic to R3 and generalized cusps in projective 3 manifolds, Topology Appl. 206 (2016) 241 | DOI

[27] E L Lima, On the local triviality of the restriction map for embeddings, Comment. Math. Helv. 38 (1964) 163 | DOI

[28] L Marquis, Espace des modules marqués des surfaces projectives convexes de volume fini, Geom. Topol. 14 (2010) 2103 | DOI

[29] L Marquis, Surface projective convexe de volume fini, Ann. Inst. Fourier Grenoble 62 (2012) 325 | DOI

[30] L Marquis, Around groups in Hilbert geometry, from: "Handbook of Hilbert geometry" (editors A Papadopoulos, M Troyanov), IRMA Lect. Math. Theor. Phys. 22, Eur. Math. Soc. (2014) 207 | DOI

[31] A Papadopoulos, M Troyanov, Harmonic symmetrization of convex sets and of Finsler structures, with applications to Hilbert geometry, Expo. Math. 27 (2009) 109 | DOI

[32] R Schoen, S T Yau, Lectures on differential geometry, 1, International (1994)

[33] H Shima, The geometry of Hessian structures, World Sci. (2007) | DOI

[34] H Shima, K Yagi, Geometry of Hessian manifolds, Differential Geom. Appl. 7 (1997) 277 | DOI

[35] P A N Smith, Counterexamples to smoothing convex functions, Canad. Math. Bull. 29 (1986) 308 | DOI

[36] L F Tam, Exhaustion functions on complete manifolds, from: "Recent advances in geometric analysis" (editors Y I Lee, C S Lin, M P Tsui), Adv. Lect. Math. 11, International (2010) 211

[37] W P Thurston, The geometry and topology of three-manifolds, lecture notes (1979)

[38] È B Vinberg, The theory of homogeneous convex cones, Trudy Moskov. Mat. Obšč. 12 (1963) 303

[39] J H C Whitehead, On C1–complexes, Ann. of Math. 41 (1940) 809 | DOI

[40] D Witte, Superrigidity of lattices in solvable Lie groups, Invent. Math. 122 (1995) 147 | DOI

Cité par Sources :