Smooth factors of projective actions of higher-rank lattices and rigidity
Geometry & topology, Tome 22 (2018) no. 2, pp. 1227-1266.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We study smooth factors of the standard actions of lattices in higher-rank semisimple Lie groups on flag manifolds. Under a mild condition on the existence of a single differentiable sink, we show that these factors are C–conjugate to the standard actions on flag manifolds.

DOI : 10.2140/gt.2018.22.1227
Classification : 37C15, 37C85
Keywords: projective actions, lattices, higher rank, rigidity, factor theorem

Gorodnik, Alexander 1 ; Spatzier, Ralf 2

1 Department of Mathematics, University of Bristol, Bristol, United Kingdom
2 Department of Mathematics, University of Michigan, Ann Arbor, MI, United States
@article{GT_2018_22_2_a11,
     author = {Gorodnik, Alexander and Spatzier, Ralf},
     title = {Smooth factors of projective actions of higher-rank lattices and rigidity},
     journal = {Geometry & topology},
     pages = {1227--1266},
     publisher = {mathdoc},
     volume = {22},
     number = {2},
     year = {2018},
     doi = {10.2140/gt.2018.22.1227},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.1227/}
}
TY  - JOUR
AU  - Gorodnik, Alexander
AU  - Spatzier, Ralf
TI  - Smooth factors of projective actions of higher-rank lattices and rigidity
JO  - Geometry & topology
PY  - 2018
SP  - 1227
EP  - 1266
VL  - 22
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.1227/
DO  - 10.2140/gt.2018.22.1227
ID  - GT_2018_22_2_a11
ER  - 
%0 Journal Article
%A Gorodnik, Alexander
%A Spatzier, Ralf
%T Smooth factors of projective actions of higher-rank lattices and rigidity
%J Geometry & topology
%D 2018
%P 1227-1266
%V 22
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.1227/
%R 10.2140/gt.2018.22.1227
%F GT_2018_22_2_a11
Gorodnik, Alexander; Spatzier, Ralf. Smooth factors of projective actions of higher-rank lattices and rigidity. Geometry & topology, Tome 22 (2018) no. 2, pp. 1227-1266. doi : 10.2140/gt.2018.22.1227. http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.1227/

[1] Y Benoist, Propriétés asymptotiques des groupes linéaires, Geom. Funct. Anal. 7 (1997) 1 | DOI

[2] A Borel, Linear algebraic groups, 126, Springer (1991) | DOI

[3] A Brown, F Rodriguez Hertz, Z Wang, Invariant measures and measurable projective factors for actions of higher-rank lattices on manifolds, preprint (2016)

[4] S G Dani, Continuous equivariant images of lattice-actions on boundaries, Ann. of Math. 119 (1984) 111 | DOI

[5] S G Dani, Orbits of horospherical flows, Duke Math. J. 53 (1986) 177 | DOI

[6] D Fisher, Groups acting on manifolds : around the Zimmer program, from: "Geometry, rigidity, and group actions" (editors B Farb, D Fisher), Univ. Chicago Press (2011) 72 | DOI

[7] D Fisher, B Kalinin, R Spatzier, Global rigidity of higher rank Anosov actions on tori and nilmanifolds, J. Amer. Math. Soc. 26 (2013) 167 | DOI

[8] D Fisher, G Margulis, Local rigidity of affine actions of higher rank groups and lattices, Ann. of Math. 170 (2009) 67 | DOI

[9] W Fulton, J Harris, Representation theory: a first course, 129, Springer (1991) | DOI

[10] É Ghys, Rigidité différentiable des groupes fuchsiens, Inst. Hautes Études Sci. Publ. Math. 78 (1993) 163 | DOI

[11] M Guysinsky, The theory of non-stationary normal forms, Ergodic Theory Dynam. Systems 22 (2002) 845 | DOI

[12] M Guysinsky, A Katok, Normal forms and invariant geometric structures for dynamical systems with invariant contracting foliations, Math. Res. Lett. 5 (1998) 149 | DOI

[13] S Helgason, Differential geometry, Lie groups, and symmetric spaces, 34, Amer. Math. Soc. (2001) | DOI

[14] N V Ivanov, Action of Möbius transformations on homeomorphisms : stability and rigidity, Geom. Funct. Anal. 6 (1996) 79 | DOI

[15] M Kanai, A new approach to the rigidity of discrete group actions, Geom. Funct. Anal. 6 (1996) 943 | DOI

[16] A Katok, R J Spatzier, Differential rigidity of Anosov actions of higher rank abelian groups and algebraic lattice actions, Tr. Mat. Inst. Steklova 216 (1997) 292

[17] D Y Kleinbock, G A Margulis, Bounded orbits of nonquasiunipotent flows on homogeneous spaces, from: "Sinaĭ’s Moscow Seminar on Dynamical Systems" (editors L A Bunimovich, B M Gurevich, Y B Pesin), Amer. Math. Soc. Transl. Ser. 2 171, Amer. Math. Soc. (1996) 141 | DOI

[18] G A Margulis, Finiteness of quotient groups of discrete subgroups, Funktsional. Anal. i Prilozhen. 13 (1979) 28

[19] G A Margulis, Discrete subgroups of semisimple Lie groups, 17, Springer (1991)

[20] D Montgomery, L Zippin, Topological transformation groups, Interscience (1955)

[21] A L Onishchik, È B Vinberg, Lie groups and algebraic groups, Springer (1990) | DOI

[22] G Prasad, M S Raghunathan, Cartan subgroups and lattices in semi-simple groups, Ann. of Math. 96 (1972) 296 | DOI

[23] G Prasad, A S Rapinchuk, Existence of irreducible R–regular elements in Zariski-dense subgroups, Math. Res. Lett. 10 (2003) 21 | DOI

[24] F Rodriguez Hertz, Z Wang, Global rigidity of higher rank abelian Anosov algebraic actions, Invent. Math. 198 (2014) 165 | DOI

[25] R J Spatzier, On lattices acting on boundaries of semisimple groups, Ergodic Theory Dynamical Systems 1 (1981) 489 | DOI

[26] P Tukia, Differentiability and rigidity of Möbius groups, Invent. Math. 82 (1985) 557 | DOI

[27] R J Zimmer, Equivariant images of projective space under the action of SL(n,Z), Ergodic Theory Dynamical Systems 1 (1981) 519 | DOI

[28] R J Zimmer, Ergodic theory and semisimple groups, 81, Birkhäuser (1984) | DOI

Cité par Sources :