Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We study smooth factors of the standard actions of lattices in higher-rank semisimple Lie groups on flag manifolds. Under a mild condition on the existence of a single differentiable sink, we show that these factors are –conjugate to the standard actions on flag manifolds.
Gorodnik, Alexander 1 ; Spatzier, Ralf 2
@article{GT_2018_22_2_a11, author = {Gorodnik, Alexander and Spatzier, Ralf}, title = {Smooth factors of projective actions of higher-rank lattices and rigidity}, journal = {Geometry & topology}, pages = {1227--1266}, publisher = {mathdoc}, volume = {22}, number = {2}, year = {2018}, doi = {10.2140/gt.2018.22.1227}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.1227/} }
TY - JOUR AU - Gorodnik, Alexander AU - Spatzier, Ralf TI - Smooth factors of projective actions of higher-rank lattices and rigidity JO - Geometry & topology PY - 2018 SP - 1227 EP - 1266 VL - 22 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.1227/ DO - 10.2140/gt.2018.22.1227 ID - GT_2018_22_2_a11 ER -
%0 Journal Article %A Gorodnik, Alexander %A Spatzier, Ralf %T Smooth factors of projective actions of higher-rank lattices and rigidity %J Geometry & topology %D 2018 %P 1227-1266 %V 22 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.1227/ %R 10.2140/gt.2018.22.1227 %F GT_2018_22_2_a11
Gorodnik, Alexander; Spatzier, Ralf. Smooth factors of projective actions of higher-rank lattices and rigidity. Geometry & topology, Tome 22 (2018) no. 2, pp. 1227-1266. doi : 10.2140/gt.2018.22.1227. http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.1227/
[1] Propriétés asymptotiques des groupes linéaires, Geom. Funct. Anal. 7 (1997) 1 | DOI
,[2] Linear algebraic groups, 126, Springer (1991) | DOI
,[3] Invariant measures and measurable projective factors for actions of higher-rank lattices on manifolds, preprint (2016)
, , ,[4] Continuous equivariant images of lattice-actions on boundaries, Ann. of Math. 119 (1984) 111 | DOI
,[5] Orbits of horospherical flows, Duke Math. J. 53 (1986) 177 | DOI
,[6] Groups acting on manifolds : around the Zimmer program, from: "Geometry, rigidity, and group actions" (editors B Farb, D Fisher), Univ. Chicago Press (2011) 72 | DOI
,[7] Global rigidity of higher rank Anosov actions on tori and nilmanifolds, J. Amer. Math. Soc. 26 (2013) 167 | DOI
, , ,[8] Local rigidity of affine actions of higher rank groups and lattices, Ann. of Math. 170 (2009) 67 | DOI
, ,[9] Representation theory: a first course, 129, Springer (1991) | DOI
, ,[10] Rigidité différentiable des groupes fuchsiens, Inst. Hautes Études Sci. Publ. Math. 78 (1993) 163 | DOI
,[11] The theory of non-stationary normal forms, Ergodic Theory Dynam. Systems 22 (2002) 845 | DOI
,[12] Normal forms and invariant geometric structures for dynamical systems with invariant contracting foliations, Math. Res. Lett. 5 (1998) 149 | DOI
, ,[13] Differential geometry, Lie groups, and symmetric spaces, 34, Amer. Math. Soc. (2001) | DOI
,[14] Action of Möbius transformations on homeomorphisms : stability and rigidity, Geom. Funct. Anal. 6 (1996) 79 | DOI
,[15] A new approach to the rigidity of discrete group actions, Geom. Funct. Anal. 6 (1996) 943 | DOI
,[16] Differential rigidity of Anosov actions of higher rank abelian groups and algebraic lattice actions, Tr. Mat. Inst. Steklova 216 (1997) 292
, ,[17] Bounded orbits of nonquasiunipotent flows on homogeneous spaces, from: "Sinaĭ’s Moscow Seminar on Dynamical Systems" (editors L A Bunimovich, B M Gurevich, Y B Pesin), Amer. Math. Soc. Transl. Ser. 2 171, Amer. Math. Soc. (1996) 141 | DOI
, ,[18] Finiteness of quotient groups of discrete subgroups, Funktsional. Anal. i Prilozhen. 13 (1979) 28
,[19] Discrete subgroups of semisimple Lie groups, 17, Springer (1991)
,[20] Topological transformation groups, Interscience (1955)
, ,[21] Lie groups and algebraic groups, Springer (1990) | DOI
, ,[22] Cartan subgroups and lattices in semi-simple groups, Ann. of Math. 96 (1972) 296 | DOI
, ,[23] Existence of irreducible R–regular elements in Zariski-dense subgroups, Math. Res. Lett. 10 (2003) 21 | DOI
, ,[24] Global rigidity of higher rank abelian Anosov algebraic actions, Invent. Math. 198 (2014) 165 | DOI
, ,[25] On lattices acting on boundaries of semisimple groups, Ergodic Theory Dynamical Systems 1 (1981) 489 | DOI
,[26] Differentiability and rigidity of Möbius groups, Invent. Math. 82 (1985) 557 | DOI
,[27] Equivariant images of projective space under the action of SL(n,Z), Ergodic Theory Dynamical Systems 1 (1981) 519 | DOI
,[28] Ergodic theory and semisimple groups, 81, Birkhäuser (1984) | DOI
,Cité par Sources :