Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We establish a relative version of the abstract “affine representability” theorem in –homotopy theory from part I of this paper. We then prove some –invariance statements for generically trivial torsors under isotropic reductive groups over infinite fields analogous to the Bass–Quillen conjecture for vector bundles. Putting these ingredients together, we deduce representability theorems for generically trivial torsors under isotropic reductive groups and for associated homogeneous spaces in –homotopy theory.
Asok, Aravind 1 ; Hoyois, Marc 2 ; Wendt, Matthias 3
@article{GT_2018_22_2_a10, author = {Asok, Aravind and Hoyois, Marc and Wendt, Matthias}, title = {Affine representability results in {\ensuremath{\mathbb{A}}1{\textendash}homotopy} theory, {II} : {Principal} bundles and homogeneous spaces}, journal = {Geometry & topology}, pages = {1181--1225}, publisher = {mathdoc}, volume = {22}, number = {2}, year = {2018}, doi = {10.2140/gt.2018.22.1181}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.1181/} }
TY - JOUR AU - Asok, Aravind AU - Hoyois, Marc AU - Wendt, Matthias TI - Affine representability results in 𝔸1–homotopy theory, II : Principal bundles and homogeneous spaces JO - Geometry & topology PY - 2018 SP - 1181 EP - 1225 VL - 22 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.1181/ DO - 10.2140/gt.2018.22.1181 ID - GT_2018_22_2_a10 ER -
%0 Journal Article %A Asok, Aravind %A Hoyois, Marc %A Wendt, Matthias %T Affine representability results in 𝔸1–homotopy theory, II : Principal bundles and homogeneous spaces %J Geometry & topology %D 2018 %P 1181-1225 %V 22 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.1181/ %R 10.2140/gt.2018.22.1181 %F GT_2018_22_2_a10
Asok, Aravind; Hoyois, Marc; Wendt, Matthias. Affine representability results in 𝔸1–homotopy theory, II : Principal bundles and homogeneous spaces. Geometry & topology, Tome 22 (2018) no. 2, pp. 1181-1225. doi : 10.2140/gt.2018.22.1181. http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.1181/
[1] Schémas en groupes, espaces homogènes et espaces algébriques sur une base de dimension 1, from: "Sur les groupes algébriques", Mém. Soc. Math. France 33, Soc. Math. France (1973) 5
,[2] Versal deformations and algebraic stacks, Invent. Math. 27 (1974) 165 | DOI
,[3] Théorie des topos et cohomologie étale des schémas, Tome 1 : Théorie des topos, Exposés I–IV (SGA 41 ), 269, Springer (1972)
, , ,[4] Smooth models of motivic spheres and the clutching construction, Int. Math. Res. Not. 2017 (2017) 1890 | DOI
, , ,[5] Algebraic vector bundles on spheres, J. Topol. 7 (2014) 894 | DOI
, ,[6] A cohomological classification of vector bundles on smooth affine threefolds, Duke Math. J. 163 (2014) 2561 | DOI
, ,[7] Splitting vector bundles outside the stable range and A1–homotopy sheaves of punctured affine spaces, J. Amer. Math. Soc. 28 (2015) 1031 | DOI
, ,[8] Euler class groups and motivic stable cohomotopy, preprint (2016)
, ,[9] Affine representability results in A1–homotopy theory, I : vector bundles, Duke Math. J. 166 (2017) 1923 | DOI
, , ,[10] Generically split octonion algebras and A1–homotopy theory, preprint (2017)
, , ,[11] Nonabelian K–theory : the nilpotent class of K1 and general stability, –Theory 4 (1991) 363 | DOI
,[12] Localization-completion strikes again : relative K1 is nilpotent by abelian, J. Pure Appl. Algebra 213 (2009) 1075 | DOI
, , ,[13] R–equivalence and A1–connectedness in anisotropic groups, Int. Math. Res. Not. 2015 (2015) 11816 | DOI
, ,[14] A1–connectedness in reductive algebraic groups, Trans. Amer. Math. Soc. 369 (2017) 5999 | DOI
, ,[15] Suites de Sturm, indice de Maslov et périodicité de Bott, 267, Birkhäuser (2008) | DOI
, ,[16] Locally polynomial algebras are symmetric algebras, Invent. Math. 38 (1976) 279 | DOI
, , ,[17] The Stacks project, http://stacks.math.columbia.edu, electronic reference (2005–)
, , ,[18] Rationally trivial homogeneous principal fibrations of schemes, Invent. Math. 11 (1970) 259 | DOI
,[19] Linear algebraic groups, 126, Springer (1991) | DOI
,[20] Algebraic homotopy classes of rational functions, Ann. Sci. Éc. Norm. Supér. 45 (2012) 511 | DOI
,[21] Espaces principaux homogènes localement triviaux, Inst. Hautes Études Sci. Publ. Math. 75 (1992) 97 | DOI
, ,[22] Reductive group schemes, from: "Autour des schémas en groupes, I", Panor. Synthèses 42/43, Soc. Math. France (2014) 93
,[23] Pseudo-reductive groups, 17, Cambridge Univ. Press (2010) | DOI
, , ,[24] Schémas en groupes, Tome II : Groupes de type multiplicatif, et structure des schémas en groupes généraux, Exposés VIII–XVIII (SGA 3II ), 152, Springer (1970)
, ,[25] Schémas en groupes, Tome III : Structure des schémas en groupes réductifs, Exposés XIX–XXVI (SGA 3III ), 153, Springer (1970)
, ,[26] Hypercovers and simplicial presheaves, Math. Proc. Cambridge Philos. Soc. 136 (2004) 9 | DOI
, , ,[27] Some remarks on orbit sets of unimodular rows, Comment. Math. Helv. 86 (2011) 13 | DOI
,[28] On the number of generators of ideals in polynomial rings, Ann. of Math. 184 (2016) 315 | DOI
,[29] A proof of the Grothendieck–Serre conjecture on principal bundles over regular local rings containing infinite fields, Publ. Math. Inst. Hautes Études Sci. 122 (2015) 169 | DOI
, ,[30] Le problème de Kneser–Tits, from: "Séminaire Bourbaki, 2007/2008", Astérisque 326, Soc. Mat. de France (2009) 39
,[31] Sur la classification des schémas en groupes semi-simples, from: "Autour des schémas en groupes, III", Panor. Synthèses 47, Soc. Math. France (2015) 39
,[32] Simplicial homotopy theory, 174, Birkhäuser (1999) | DOI
, ,[33] Eléments de géométrie algébrique, IV : Étude locale des schémas et des morphismes de schémas, IV, Inst. Hautes Études Sci. Publ. Math. 32 (1967) 5 | DOI
,[34] A homotopy theory for stacks, Israel J. Math. 163 (2008) 93 | DOI
,[35] An algebraic fibre bundle over P1 that is not a vector bundle, Topology 12 (1973) 229 | DOI
,[36] On the homotopy groups of algebraic groups, J. Algebra 81 (1983) 180 | DOI
,[37] Quadratic and Hermitian forms over rings, 294, Springer (1991) | DOI
,[38] Fundamental groups, algebraic K–theory, and a problem of Abhyankar, Invent. Math. 19 (1973) 15 | DOI
,[39] Serre’s problem on projective modules, Springer (2006) | DOI
,[40] The structure of the group G(k[t]) : variations on a theme of Soulé, Algebra Number Theory 3 (2009) 393 | DOI
,[41] Étale cohomology, 33, Princeton Univ. Press (1980)
,[42] Symmetric bilinear forms, 73, Springer (1973) | DOI
, ,[43] On the Friedlander–Milnor conjecture for groups of small rank, from: "Current developments in mathematics, 2010" (editors D Jerison, B Mazur, T Mrowka, W Schmid, R Stanley, S T Yau), International (2011) 45
,[44] A1–algebraic topology over a field, 2052, Springer (2012) | DOI
,[45] A1–homotopy theory of schemes, Inst. Hautes Études Sci. Publ. Math. 90 (1999) 45 | DOI
, ,[46] A1–locality results for linear algebraic groups, in preparation
,[47] Rational triviale Torseure und die Serre–Grothendiecksche Vermutung, Diplomarbeit, Ludwig-Maximilians-Universität München (2008)
,[48] Espaces homogènes principaux rationnellement triviaux et arithmétique des schémas en groupes réductifs sur les anneaux de Dedekind, C. R. Acad. Sci. Paris Sér. I Math. 299 (1984) 5
,[49] Proof of Grothendieck–Serre conjecture on principal G–bundles over regular local rings containing a finite field, preprint (2014)
,[50] On the motivic commutative ring spectrum BO, preprint (2010)
, ,[51] Quaternionic Grassmannians and Pontryagin classes in algebraic geometry, preprint (2010)
, ,[52] Elementary subgroups in isotropic reductive groups, Algebra i Analiz 20 (2008) 160
, ,[53] Polynomial rings and their projective modules, Nagoya Math. J. 113 (1989) 121 | DOI
,[54] Projective modules over polynomial rings, Invent. Math. 36 (1976) 167 | DOI
,[55] Principal bundles on affine space, from: "C P Ramanujam : a tribute" (editor K G Ramanathan), Tata Inst. Fund. Res. Studies in Math. 8, Springer (1978) 187
,[56] Deformations of principal bundles on the projective line, Invent. Math. 71 (1983) 165 | DOI
,[57] Euler class groups and the homology of elementary and special linear groups, Adv. Math. 320 (2017) 1 | DOI
,[58] Octonions, Jordan algebras and exceptional groups, Springer (2000) | DOI
, ,[59] Homotopy invariance of non-stable K1–functors, J. –Theory 13 (2014) 199 | DOI
,[60] Locally polynomial rings and symmetric algebras, Izv. Akad. Nauk SSSR Ser. Mat. 41 (1977) 503
,[61] Equivariant resolution, linearization, and Hilbert’s fourteenth problem over arbitrary base schemes, Adv. in Math. 65 (1987) 16 | DOI
,[62] On A1–fundamental groups of isotropic reductive groups, C. R. Math. Acad. Sci. Paris 354 (2016) 453 | DOI
, ,[63] Homotopy algebraic K–theory, from: "Algebraic –theory and algebraic number theory" (editors M R Stein, R K Dennis), Contemp. Math. 83, Amer. Math. Soc. (1989) 461 | DOI
,[64] A1–homotopy of Chevalley groups, J. –Theory 5 (2010) 245 | DOI
,[65] Rationally trivial torsors in A1–homotopy theory, J. –Theory 7 (2011) 541 | DOI
,[66] On mappings into group-like spaces, Comment. Math. Helv. 28 (1954) 320 | DOI
,Cité par Sources :