Markov numbers and Lagrangian cell complexes in the complex projective plane
Geometry & topology, Tome 22 (2018) no. 2, pp. 1143-1180.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We study Lagrangian embeddings of a class of two-dimensional cell complexes Lp,q into the complex projective plane. These cell complexes, which we call pinwheels, arise naturally in algebraic geometry as vanishing cycles for quotient singularities of type (1p2)(pq 1,1) (Wahl singularities). We show that if a pinwheel admits a Lagrangian embedding into 2 then p is a Markov number and we completely characterise q. We also show that a collection of Lagrangian pinwheels Lpi,qi, i = 1,,N, cannot be made disjoint unless N 3 and the pi form part of a Markov triple. These results are the symplectic analogue of a theorem of Hacking and Prokhorov, which classifies complex surfaces with quotient singularities admitting a –Gorenstein smoothing whose general fibre is 2.

DOI : 10.2140/gt.2018.22.1143
Classification : 14J17, 53D35, 53D42
Keywords: symplectic four-manifolds and orbifolds, Markov numbers, Wahl singularities, vanishing cycles

Evans, Jonathan 1 ; Smith, Ivan 2

1 Department of Mathematics, University College London, London, United Kingdom
2 Centre for Mathematical Sciences, University of Cambridge, Cambridge, United Kingdom
@article{GT_2018_22_2_a9,
     author = {Evans, Jonathan and Smith, Ivan},
     title = {Markov numbers and {Lagrangian} cell complexes in the complex projective plane},
     journal = {Geometry & topology},
     pages = {1143--1180},
     publisher = {mathdoc},
     volume = {22},
     number = {2},
     year = {2018},
     doi = {10.2140/gt.2018.22.1143},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.1143/}
}
TY  - JOUR
AU  - Evans, Jonathan
AU  - Smith, Ivan
TI  - Markov numbers and Lagrangian cell complexes in the complex projective plane
JO  - Geometry & topology
PY  - 2018
SP  - 1143
EP  - 1180
VL  - 22
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.1143/
DO  - 10.2140/gt.2018.22.1143
ID  - GT_2018_22_2_a9
ER  - 
%0 Journal Article
%A Evans, Jonathan
%A Smith, Ivan
%T Markov numbers and Lagrangian cell complexes in the complex projective plane
%J Geometry & topology
%D 2018
%P 1143-1180
%V 22
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.1143/
%R 10.2140/gt.2018.22.1143
%F GT_2018_22_2_a9
Evans, Jonathan; Smith, Ivan. Markov numbers and Lagrangian cell complexes in the complex projective plane. Geometry & topology, Tome 22 (2018) no. 2, pp. 1143-1180. doi : 10.2140/gt.2018.22.1143. http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.1143/

[1] M Aigner, Markov’s theorem and 100 years of the uniqueness conjecture : a mathematical journey from irrational numbers to perfect matchings, Springer (2013) | DOI

[2] P Biran, Lagrangian barriers and symplectic embeddings, Geom. Funct. Anal. 11 (2001) 407 | DOI

[3] F Bourgeois, Y Eliashberg, H Hofer, K Wysocki, E Zehnder, Compactness results in symplectic field theory, Geom. Topol. 7 (2003) 799 | DOI

[4] J W S Cassels, An introduction to Diophantine approximation, 45, Cambridge University Press (1957)

[5] W Chen, Orbifold adjunction formula and symplectic cobordisms between lens spaces, Geom. Topol. 8 (2004) 701 | DOI

[6] W Chen, Pseudoholomorphic curves in four-orbifolds and some applications, from: "Geometry and topology of manifolds" (editors H U Boden, I Hambleton, A J Nicas, B D Park), Fields Inst. Commun. 47, Amer. Math. Soc. (2005) 11

[7] W Chen, Y Ruan, Orbifold Gromov–Witten theory, from: "Orbifolds in mathematics and physics" (editors A Adem, J Morava, Y Ruan), Contemp. Math. 310, Amer. Math. Soc. (2002) 25 | DOI

[8] K Cieliebak, K Mohnke, Compactness for punctured holomorphic curves, J. Symplectic Geom. 3 (2005) 589 | DOI

[9] P Hacking, Y Prokhorov, Degenerations of del Pezzo surfaces, I, preprint (2005)

[10] P Hacking, Y Prokhorov, Smoothable del Pezzo surfaces with quotient singularities, Compos. Math. 146 (2010) 169 | DOI

[11] B V Karpov, D Y Nogin, Three-block exceptional sets on del Pezzo surfaces, Izv. Ross. Akad. Nauk Ser. Mat. 62 (1998) 3

[12] T. Khodorovskiy, Symplectic rational blow-up and embeddings of rational homology balls, PhD thesis, Harvard University (2012)

[13] T Khodorovskiy, Bounds on embeddings of rational homology balls in symplectic 4–manifolds, preprint (2013)

[14] T Khodorovskiy, Symplectic rational blow-up, preprint (2013)

[15] J Kollár, Is there a topological Bogomolov–Miyaoka–Yau inequality ?, Pure Appl. Math. Q. 4 (2008) 203 | DOI

[16] Y Lekili, M Maydanskiy, The symplectic topology of some rational homology balls, Comment. Math. Helv. 89 (2014) 571 | DOI

[17] M Manetti, Normal degenerations of the complex projective plane, J. Reine Angew. Math. 419 (1991) 89 | DOI

[18] M J Micallef, B White, The structure of branch points in minimal surfaces and in pseudoholomorphic curves, Ann. of Math. 141 (1995) 35 | DOI

[19] J Milnor, Singular points of complex hypersurfaces, 61, Princeton University Press (1968)

[20] G Rosenberger, Über die diophantische Gleichung ax2 + by2 + cz2 = dxyz, J. Reine Angew. Math. 305 (1979) 122 | DOI

[21] N J A Sloane, J H Conway, Markov numbers, (1991)

[22] M Symington, Four dimensions from two in symplectic topology, from: "Topology and geometry of manifolds" (editors G Matić, C McCrory), Proc. Sympos. Pure Math. 71, Amer. Math. Soc. (2003) 153 | DOI

[23] R Vianna, On exotic Lagrangian tori in CP2, Geom. Topol. 18 (2014) 2419 | DOI

[24] R F V Vianna, Infinitely many exotic monotone Lagrangian tori in CP2, J. Topol. 9 (2016) 535 | DOI

[25] R Vianna, Infinitely many monotone Lagrangian tori in del Pezzo surfaces, Selecta Math. 23 (2017) 1955 | DOI

[26] J Wahl, Smoothings of normal surface singularities, Topology 20 (1981) 219 | DOI

Cité par Sources :