Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We use a weak mean curvature flow together with a surgery procedure to show that all closed hypersurfaces in with entropy less than or equal to that of , the round cylinder in , are diffeomorphic to .
Bernstein, Jacob 1 ; Wang, Lu 2
@article{GT_2018_22_2_a8, author = {Bernstein, Jacob and Wang, Lu}, title = {Topology of closed hypersurfaces of small entropy}, journal = {Geometry & topology}, pages = {1109--1141}, publisher = {mathdoc}, volume = {22}, number = {2}, year = {2018}, doi = {10.2140/gt.2018.22.1109}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.1109/} }
TY - JOUR AU - Bernstein, Jacob AU - Wang, Lu TI - Topology of closed hypersurfaces of small entropy JO - Geometry & topology PY - 2018 SP - 1109 EP - 1141 VL - 22 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.1109/ DO - 10.2140/gt.2018.22.1109 ID - GT_2018_22_2_a8 ER -
Bernstein, Jacob; Wang, Lu. Topology of closed hypersurfaces of small entropy. Geometry & topology, Tome 22 (2018) no. 2, pp. 1109-1141. doi : 10.2140/gt.2018.22.1109. http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.1109/
[1] On the subdivision of 3–space by a polyhedron, Nat. Acad. Proc. 10 (1924) 6 | DOI
,[2] A sharp lower bound for the entropy of closed hypersurfaces up to dimension six, Invent. Math. 206 (2016) 601 | DOI
, ,[3] A topological property of asymptotically conical self-shrinkers of small entropy, Duke Math. J. 166 (2017) 403 | DOI
, ,[4] The motion of a surface by its mean curvature, 20, Princeton Univ. Press (1978)
,[5] Sur les difféomorphismes de la sphère de dimension trois (Γ4 = 0), 53, Springer (1968) | DOI
,[6] Uniqueness and existence of viscosity solutions of generalized mean curvature flow equations, J. Differential Geom. 33 (1991) 749 | DOI
, , ,[7] Volume estimate about shrinkers, Proc. Amer. Math. Soc. 141 (2013) 687 | DOI
, ,[8] The round sphere minimizes entropy among closed self-shrinkers, J. Differential Geom. 95 (2013) 53 | DOI
, , , ,[9] Generic mean curvature flow, I : Generic singularities, Ann. of Math. 175 (2012) 755 | DOI
, ,[10] Motion of level sets by mean curvature, I, J. Differential Geom. 33 (1991) 635 | DOI
, ,[11] Motion of level sets by mean curvature, II, Trans. Amer. Math. Soc. 330 (1992) 321 | DOI
, ,[12] Motion of level sets by mean curvature, III, J. Geom. Anal. 2 (1992) 121 | DOI
, ,[13] Motion of level sets by mean curvature, IV, J. Geom. Anal. 5 (1995) 77 | DOI
, ,[14] Differential topology, 33, Springer (1976) | DOI
,[15] Minimal cones and the spherical Bernstein problem, I, Ann. of Math. 118 (1983) 61 | DOI
,[16] Minimal cones and the spherical Bernstein problem, II, Invent. Math. 74 (1983) 351 | DOI
,[17] Minimal cones and the spherical Bernstein problem, III, Invent. Math. 85 (1986) 223 | DOI
, ,[18] Flow by mean curvature of convex surfaces into spheres, J. Differential Geom. 20 (1984) 237 | DOI
,[19] Asymptotic behavior for singularities of the mean curvature flow, J. Differential Geom. 31 (1990) 285 | DOI
,[20] Elliptic regularization and partial regularity for motion by mean curvature, 520, Amer. Math. Soc. (1994) | DOI
,[21] Singularities of mean curvature flow of surfaces, preprint (1995)
,[22] On short time existence for the planar network flow, preprint (2014)
, , ,[23] Sharp lower bounds on density for area-minimizing cones, Camb. J. Math. 3 (2015) 1 | DOI
, ,[24] Entropy of closed surfaces and min-max theory, preprint (2015)
, ,[25] Min-max theory and the Willmore conjecture, Ann. of Math. 179 (2014) 683 | DOI
, ,[26] Differentiable isotopies on the 2–sphere, Michigan Math. J. 7 (1960) 193 | DOI
,[27] Fronts propagating with curvature-dependent speed : algorithms based on Hamilton–Jacobi formulations, J. Comput. Phys. 79 (1988) 12 | DOI
, ,[28] Uniqueness of compact tangent flows in mean curvature flow, J. Reine Angew. Math. 690 (2014) 163 | DOI
,[29] Lectures on geometric measure theory, 3, Aust. Nat. Univ., Centre for Math. Anal. (1983)
,[30] Diffeomorphisms of the 2–sphere, Proc. Amer. Math. Soc. 10 (1959) 621 | DOI
,[31] A density function and the structure of singularities of the mean curvature flow, Calc. Var. Partial Differential Equations 2 (1994) 443 | DOI
,[32] Uniqueness of self-similar shrinkers with asymptotically conical ends, J. Amer. Math. Soc. 27 (2014) 613 | DOI
,[33] A local regularity theorem for mean curvature flow, Ann. of Math. 161 (2005) 1487 | DOI
,[34] On the entropy of closed hypersurfaces and singular self-shrinkers, preprint (2016)
,Cité par Sources :