Topology of closed hypersurfaces of small entropy
Geometry & topology, Tome 22 (2018) no. 2, pp. 1109-1141.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We use a weak mean curvature flow together with a surgery procedure to show that all closed hypersurfaces in 4 with entropy less than or equal to that of S2 × , the round cylinder in 4, are diffeomorphic to S3.

DOI : 10.2140/gt.2018.22.1109
Classification : 53C44, 35K55, 57R65
Keywords: mean curvature flow, surgery, entropy, self-shrinker

Bernstein, Jacob 1 ; Wang, Lu 2

1 Department Of Mathematics, Johns Hopkins University, Baltimore, MD, United States
2 Department of Mathematics, University of Wisconsin, Madison, WI, United States
@article{GT_2018_22_2_a8,
     author = {Bernstein, Jacob and Wang, Lu},
     title = {Topology of closed hypersurfaces of small entropy},
     journal = {Geometry & topology},
     pages = {1109--1141},
     publisher = {mathdoc},
     volume = {22},
     number = {2},
     year = {2018},
     doi = {10.2140/gt.2018.22.1109},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.1109/}
}
TY  - JOUR
AU  - Bernstein, Jacob
AU  - Wang, Lu
TI  - Topology of closed hypersurfaces of small entropy
JO  - Geometry & topology
PY  - 2018
SP  - 1109
EP  - 1141
VL  - 22
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.1109/
DO  - 10.2140/gt.2018.22.1109
ID  - GT_2018_22_2_a8
ER  - 
%0 Journal Article
%A Bernstein, Jacob
%A Wang, Lu
%T Topology of closed hypersurfaces of small entropy
%J Geometry & topology
%D 2018
%P 1109-1141
%V 22
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.1109/
%R 10.2140/gt.2018.22.1109
%F GT_2018_22_2_a8
Bernstein, Jacob; Wang, Lu. Topology of closed hypersurfaces of small entropy. Geometry & topology, Tome 22 (2018) no. 2, pp. 1109-1141. doi : 10.2140/gt.2018.22.1109. http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.1109/

[1] J W Alexander, On the subdivision of 3–space by a polyhedron, Nat. Acad. Proc. 10 (1924) 6 | DOI

[2] J Bernstein, L Wang, A sharp lower bound for the entropy of closed hypersurfaces up to dimension six, Invent. Math. 206 (2016) 601 | DOI

[3] J Bernstein, L Wang, A topological property of asymptotically conical self-shrinkers of small entropy, Duke Math. J. 166 (2017) 403 | DOI

[4] K A Brakke, The motion of a surface by its mean curvature, 20, Princeton Univ. Press (1978)

[5] J Cerf, Sur les difféomorphismes de la sphère de dimension trois (Γ4 = 0), 53, Springer (1968) | DOI

[6] Y G Chen, Y Giga, S Goto, Uniqueness and existence of viscosity solutions of generalized mean curvature flow equations, J. Differential Geom. 33 (1991) 749 | DOI

[7] X Cheng, D Zhou, Volume estimate about shrinkers, Proc. Amer. Math. Soc. 141 (2013) 687 | DOI

[8] T H Colding, T Ilmanen, W P Minicozzi Ii, B White, The round sphere minimizes entropy among closed self-shrinkers, J. Differential Geom. 95 (2013) 53 | DOI

[9] T H Colding, W P Minicozzi Ii, Generic mean curvature flow, I : Generic singularities, Ann. of Math. 175 (2012) 755 | DOI

[10] L C Evans, J Spruck, Motion of level sets by mean curvature, I, J. Differential Geom. 33 (1991) 635 | DOI

[11] L C Evans, J Spruck, Motion of level sets by mean curvature, II, Trans. Amer. Math. Soc. 330 (1992) 321 | DOI

[12] L C Evans, J Spruck, Motion of level sets by mean curvature, III, J. Geom. Anal. 2 (1992) 121 | DOI

[13] L C Evans, J Spruck, Motion of level sets by mean curvature, IV, J. Geom. Anal. 5 (1995) 77 | DOI

[14] M W Hirsch, Differential topology, 33, Springer (1976) | DOI

[15] W Y Hsiang, Minimal cones and the spherical Bernstein problem, I, Ann. of Math. 118 (1983) 61 | DOI

[16] W Y Hsiang, Minimal cones and the spherical Bernstein problem, II, Invent. Math. 74 (1983) 351 | DOI

[17] W Y Hsiang, I Sterling, Minimal cones and the spherical Bernstein problem, III, Invent. Math. 85 (1986) 223 | DOI

[18] G Huisken, Flow by mean curvature of convex surfaces into spheres, J. Differential Geom. 20 (1984) 237 | DOI

[19] G Huisken, Asymptotic behavior for singularities of the mean curvature flow, J. Differential Geom. 31 (1990) 285 | DOI

[20] T Ilmanen, Elliptic regularization and partial regularity for motion by mean curvature, 520, Amer. Math. Soc. (1994) | DOI

[21] T Ilmanen, Singularities of mean curvature flow of surfaces, preprint (1995)

[22] T Ilmanen, A Neves, F Schulze, On short time existence for the planar network flow, preprint (2014)

[23] T Ilmanen, B White, Sharp lower bounds on density for area-minimizing cones, Camb. J. Math. 3 (2015) 1 | DOI

[24] D Ketover, X Zhou, Entropy of closed surfaces and min-max theory, preprint (2015)

[25] F C Marques, A Neves, Min-max theory and the Willmore conjecture, Ann. of Math. 179 (2014) 683 | DOI

[26] J Munkres, Differentiable isotopies on the 2–sphere, Michigan Math. J. 7 (1960) 193 | DOI

[27] S Osher, J A Sethian, Fronts propagating with curvature-dependent speed : algorithms based on Hamilton–Jacobi formulations, J. Comput. Phys. 79 (1988) 12 | DOI

[28] F Schulze, Uniqueness of compact tangent flows in mean curvature flow, J. Reine Angew. Math. 690 (2014) 163 | DOI

[29] L Simon, Lectures on geometric measure theory, 3, Aust. Nat. Univ., Centre for Math. Anal. (1983)

[30] S Smale, Diffeomorphisms of the 2–sphere, Proc. Amer. Math. Soc. 10 (1959) 621 | DOI

[31] A Stone, A density function and the structure of singularities of the mean curvature flow, Calc. Var. Partial Differential Equations 2 (1994) 443 | DOI

[32] L Wang, Uniqueness of self-similar shrinkers with asymptotically conical ends, J. Amer. Math. Soc. 27 (2014) 613 | DOI

[33] B White, A local regularity theorem for mean curvature flow, Ann. of Math. 161 (2005) 1487 | DOI

[34] J J Zhu, On the entropy of closed hypersurfaces and singular self-shrinkers, preprint (2016)

Cité par Sources :