Pixton’s double ramification cycle relations
Geometry & topology, Tome 22 (2018) no. 2, pp. 1069-1108.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We prove a conjecture of Pixton, namely that his proposed formula for the double ramification cycle on M̄g,n vanishes in codimension beyond g. This yields a collection of tautological relations in the Chow ring of M̄g,n. We describe, furthermore, how these relations can be obtained from Pixton’s 3–spin relations via localization on the moduli space of stable maps to an orbifold projective line.

DOI : 10.2140/gt.2018.22.1069
Classification : 14H10, 14N35
Keywords: moduli of curves, tautological ring, tautological relations

Clader, Emily 1 ; Janda, Felix 2

1 Department of Mathematics, San Francisco State University, San Francisco, CA, United States
2 Department of Mathematics, University of Michigan, Ann Arbor, MI, United States
@article{GT_2018_22_2_a7,
     author = {Clader, Emily and Janda, Felix},
     title = {Pixton{\textquoteright}s double ramification cycle relations},
     journal = {Geometry & topology},
     pages = {1069--1108},
     publisher = {mathdoc},
     volume = {22},
     number = {2},
     year = {2018},
     doi = {10.2140/gt.2018.22.1069},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.1069/}
}
TY  - JOUR
AU  - Clader, Emily
AU  - Janda, Felix
TI  - Pixton’s double ramification cycle relations
JO  - Geometry & topology
PY  - 2018
SP  - 1069
EP  - 1108
VL  - 22
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.1069/
DO  - 10.2140/gt.2018.22.1069
ID  - GT_2018_22_2_a7
ER  - 
%0 Journal Article
%A Clader, Emily
%A Janda, Felix
%T Pixton’s double ramification cycle relations
%J Geometry & topology
%D 2018
%P 1069-1108
%V 22
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.1069/
%R 10.2140/gt.2018.22.1069
%F GT_2018_22_2_a7
Clader, Emily; Janda, Felix. Pixton’s double ramification cycle relations. Geometry & topology, Tome 22 (2018) no. 2, pp. 1069-1108. doi : 10.2140/gt.2018.22.1069. http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.1069/

[1] R Cavalieri, Hurwitz theory and the double ramification cycle, Jpn. J. Math. 11 (2016) 305 | DOI

[2] R Cavalieri, S Marcus, J Wise, Polynomial families of tautological classes on Mg,nrt, J. Pure Appl. Algebra 216 (2012) 950 | DOI

[3] A Chiodo, Stable twisted curves and their r–spin structures, Ann. Inst. Fourier (Grenoble) 58 (2008) 1635 | DOI

[4] A Chiodo, Towards an enumerative geometry of the moduli space of twisted curves and rth roots, Compos. Math. 144 (2008) 1461 | DOI

[5] A Chiodo, Y Ruan, LG/CY correspondence : the state space isomorphism, Adv. Math. 227 (2011) 2157 | DOI

[6] A Chiodo, D Zvonkine, Twisted r–spin potential and Givental’s quantization, Adv. Theor. Math. Phys. 13 (2009) 1335 | DOI

[7] E Clader, Relations on Mg,n via orbifold stable maps, Proc. Amer. Math. Soc. 145 (2017) 11 | DOI

[8] T Coates, A Givental, H H Tseng, Virasoro constraints for toric bundles, preprint (2015)

[9] C Deninger, J Murre, Motivic decomposition of abelian schemes and the Fourier transform, J. Reine Angew. Math. 422 (1991) 201 | DOI

[10] J Ebert, O Randal-Williams, Stable cohomology of the universal Picard varieties and the extended mapping class group, Doc. Math. 17 (2012) 417

[11] C Faber, R Pandharipande, Relative maps and tautological classes, J. Eur. Math. Soc. 7 (2005) 13 | DOI

[12] A B Givental, Gromov–Witten invariants and quantization of quadratic Hamiltonians, Mosc. Math. J. 1 (2001) 551

[13] A B Givental, Semisimple Frobenius structures at higher genus, Int. Math. Res. Not. 2001 (2001) 1265 | DOI

[14] T Graber, R Pandharipande, Constructions of nontautological classes on moduli spaces of curves, Michigan Math. J. 51 (2003) 93 | DOI

[15] S Grushevsky, K Hulek, Geometry of theta divisors: a survey, from: "A celebration of algebraic geometry" (editors B Hassett, J McKernan, J Starr, R Vakil), Clay Math. Proc. 18, Amer. Math. Soc. (2013) 361

[16] S Grushevsky, D Zakharov, The double ramification cycle and the theta divisor, Proc. Amer. Math. Soc. 142 (2014) 4053 | DOI

[17] R Hain, Normal functions and the geometry of moduli spaces of curves, from: "Handbook of moduli, I" (editors G Farkas, I Morrison), Adv. Lect. Math. 24, International (2013) 527

[18] F Janda, Comparing tautological relations from the equivariant Gromov–Witten theory of projective spaces and spin structures, preprint (2014)

[19] F Janda, Relations in the tautological ring and Frobenius manifolds near the discriminant, preprint (2015)

[20] F Janda, R Pandharipande, A Pixton, D Zvonkine, Double ramification cycles on the moduli spaces of curves, Publ. Math. Inst. Hautes Études Sci. 125 (2017) 221 | DOI

[21] P Johnson, Equivariant GW theory of stacky curves, Comm. Math. Phys. 327 (2014) 333 | DOI

[22] M Kontsevich, Y Manin, Gromov–Witten classes, quantum cohomology, and enumerative geometry, Comm. Math. Phys. 164 (1994) 525 | DOI

[23] S Marcus, J Wise, Stable maps to rational curves and the relative Jacobian, preprint (2013)

[24] A Marian, D Oprea, R Pandharipande, A Pixton, D Zvonkine, The Chern character of the Verlinde bundle over Mg,n, J. Reine Angew. Math. 732 (2017) 147 | DOI

[25] T E Milanov, H H Tseng, Equivariant orbifold structures on the projective line and integrable hierarchies, Adv. Math. 226 (2011) 641 | DOI

[26] S Morita, Families of Jacobian manifolds and characteristic classes of surface bundles, I, Ann. Inst. Fourier (Grenoble) 39 (1989) 777 | DOI

[27] S Morita, Families of Jacobian manifolds and characteristic classes of surface bundles, II, Math. Proc. Cambridge Philos. Soc. 105 (1989) 79 | DOI

[28] R Pandharipande, A Pixton, D Zvonkine, Relations on Mg,n via 3–spin structures, J. Amer. Math. Soc. 28 (2015) 279 | DOI

[29] A Pixton, Conjectural relations in the tautological ring of Mg,n, preprint (2012)

[30] A Pixton, The tautological ring of the moduli space of curves, PhD thesis, Princeton University (2013)

[31] A. Pixton, Double ramification cycles and tautological relations on Mg,n, preprint (2014)

[32] O Randal-Williams, Relations among tautological classes revisited, Adv. Math. 231 (2012) 1773 | DOI

[33] S Shadrin, L Spitz, D Zvonkine, Equivalence of ELSV and Bouchard–Mariño conjectures for r–spin Hurwitz numbers, Math. Ann. 361 (2015) 611 | DOI

[34] C Teleman, The structure of 2D semi-simple field theories, Invent. Math. 188 (2012) 525 | DOI

[35] H H Tseng, Orbifold quantum Riemann–Roch, Lefschetz and Serre, Geom. Topol. 14 (2010) 1 | DOI

[36] C Voisin, Chow rings and decomposition theorems for families of K3 surfaces and Calabi–Yau hypersurfaces, Geom. Topol. 16 (2012) 433 | DOI

Cité par Sources :