Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We prove a conjecture of Pixton, namely that his proposed formula for the double ramification cycle on vanishes in codimension beyond . This yields a collection of tautological relations in the Chow ring of . We describe, furthermore, how these relations can be obtained from Pixton’s –spin relations via localization on the moduli space of stable maps to an orbifold projective line.
Clader, Emily 1 ; Janda, Felix 2
@article{GT_2018_22_2_a7, author = {Clader, Emily and Janda, Felix}, title = {Pixton{\textquoteright}s double ramification cycle relations}, journal = {Geometry & topology}, pages = {1069--1108}, publisher = {mathdoc}, volume = {22}, number = {2}, year = {2018}, doi = {10.2140/gt.2018.22.1069}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.1069/} }
TY - JOUR AU - Clader, Emily AU - Janda, Felix TI - Pixton’s double ramification cycle relations JO - Geometry & topology PY - 2018 SP - 1069 EP - 1108 VL - 22 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.1069/ DO - 10.2140/gt.2018.22.1069 ID - GT_2018_22_2_a7 ER -
Clader, Emily; Janda, Felix. Pixton’s double ramification cycle relations. Geometry & topology, Tome 22 (2018) no. 2, pp. 1069-1108. doi : 10.2140/gt.2018.22.1069. http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.1069/
[1] Hurwitz theory and the double ramification cycle, Jpn. J. Math. 11 (2016) 305 | DOI
,[2] Polynomial families of tautological classes on Mg,nrt, J. Pure Appl. Algebra 216 (2012) 950 | DOI
, , ,[3] Stable twisted curves and their r–spin structures, Ann. Inst. Fourier (Grenoble) 58 (2008) 1635 | DOI
,[4] Towards an enumerative geometry of the moduli space of twisted curves and rth roots, Compos. Math. 144 (2008) 1461 | DOI
,[5] LG/CY correspondence : the state space isomorphism, Adv. Math. 227 (2011) 2157 | DOI
, ,[6] Twisted r–spin potential and Givental’s quantization, Adv. Theor. Math. Phys. 13 (2009) 1335 | DOI
, ,[7] Relations on Mg,n via orbifold stable maps, Proc. Amer. Math. Soc. 145 (2017) 11 | DOI
,[8] Virasoro constraints for toric bundles, preprint (2015)
, , ,[9] Motivic decomposition of abelian schemes and the Fourier transform, J. Reine Angew. Math. 422 (1991) 201 | DOI
, ,[10] Stable cohomology of the universal Picard varieties and the extended mapping class group, Doc. Math. 17 (2012) 417
, ,[11] Relative maps and tautological classes, J. Eur. Math. Soc. 7 (2005) 13 | DOI
, ,[12] Gromov–Witten invariants and quantization of quadratic Hamiltonians, Mosc. Math. J. 1 (2001) 551
,[13] Semisimple Frobenius structures at higher genus, Int. Math. Res. Not. 2001 (2001) 1265 | DOI
,[14] Constructions of nontautological classes on moduli spaces of curves, Michigan Math. J. 51 (2003) 93 | DOI
, ,[15] Geometry of theta divisors: a survey, from: "A celebration of algebraic geometry" (editors B Hassett, J McKernan, J Starr, R Vakil), Clay Math. Proc. 18, Amer. Math. Soc. (2013) 361
, ,[16] The double ramification cycle and the theta divisor, Proc. Amer. Math. Soc. 142 (2014) 4053 | DOI
, ,[17] Normal functions and the geometry of moduli spaces of curves, from: "Handbook of moduli, I" (editors G Farkas, I Morrison), Adv. Lect. Math. 24, International (2013) 527
,[18] Comparing tautological relations from the equivariant Gromov–Witten theory of projective spaces and spin structures, preprint (2014)
,[19] Relations in the tautological ring and Frobenius manifolds near the discriminant, preprint (2015)
,[20] Double ramification cycles on the moduli spaces of curves, Publ. Math. Inst. Hautes Études Sci. 125 (2017) 221 | DOI
, , , ,[21] Equivariant GW theory of stacky curves, Comm. Math. Phys. 327 (2014) 333 | DOI
,[22] Gromov–Witten classes, quantum cohomology, and enumerative geometry, Comm. Math. Phys. 164 (1994) 525 | DOI
, ,[23] Stable maps to rational curves and the relative Jacobian, preprint (2013)
, ,[24] The Chern character of the Verlinde bundle over Mg,n, J. Reine Angew. Math. 732 (2017) 147 | DOI
, , , , ,[25] Equivariant orbifold structures on the projective line and integrable hierarchies, Adv. Math. 226 (2011) 641 | DOI
, ,[26] Families of Jacobian manifolds and characteristic classes of surface bundles, I, Ann. Inst. Fourier (Grenoble) 39 (1989) 777 | DOI
,[27] Families of Jacobian manifolds and characteristic classes of surface bundles, II, Math. Proc. Cambridge Philos. Soc. 105 (1989) 79 | DOI
,[28] Relations on Mg,n via 3–spin structures, J. Amer. Math. Soc. 28 (2015) 279 | DOI
, , ,[29] Conjectural relations in the tautological ring of Mg,n, preprint (2012)
,[30] The tautological ring of the moduli space of curves, PhD thesis, Princeton University (2013)
,[31] Double ramification cycles and tautological relations on Mg,n, preprint (2014)
,[32] Relations among tautological classes revisited, Adv. Math. 231 (2012) 1773 | DOI
,[33] Equivalence of ELSV and Bouchard–Mariño conjectures for r–spin Hurwitz numbers, Math. Ann. 361 (2015) 611 | DOI
, , ,[34] The structure of 2D semi-simple field theories, Invent. Math. 188 (2012) 525 | DOI
,[35] Orbifold quantum Riemann–Roch, Lefschetz and Serre, Geom. Topol. 14 (2010) 1 | DOI
,[36] Chow rings and decomposition theorems for families of K3 surfaces and Calabi–Yau hypersurfaces, Geom. Topol. 16 (2012) 433 | DOI
,Cité par Sources :