De Rham theory of exploded manifolds
Geometry & topology, Tome 22 (2018) no. 1, pp. 1-54.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

This paper extends de Rham theory of smooth manifolds to exploded manifolds. Included are versions of Stokes’ theorem, de Rham cohomology, Poincaré duality, and integration along the fiber. The resulting de Rham cohomology theory of exploded manifolds is used in a separate paper (arXiv:1102.0158) to define Gromov–Witten invariants of exploded manifolds.

DOI : 10.2140/gt.2018.22.1
Classification : 58A12, 55N35
Keywords: exploded manifolds, de Rham cohomology

Parker, Brett 1

1 Mathematical Sciences Institute, Australian National University, Canberra ACT, Australia
@article{GT_2018_22_1_a0,
     author = {Parker, Brett},
     title = {De {Rham} theory of exploded manifolds},
     journal = {Geometry & topology},
     pages = {1--54},
     publisher = {mathdoc},
     volume = {22},
     number = {1},
     year = {2018},
     doi = {10.2140/gt.2018.22.1},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.1/}
}
TY  - JOUR
AU  - Parker, Brett
TI  - De Rham theory of exploded manifolds
JO  - Geometry & topology
PY  - 2018
SP  - 1
EP  - 54
VL  - 22
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.1/
DO  - 10.2140/gt.2018.22.1
ID  - GT_2018_22_1_a0
ER  - 
%0 Journal Article
%A Parker, Brett
%T De Rham theory of exploded manifolds
%J Geometry & topology
%D 2018
%P 1-54
%V 22
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.1/
%R 10.2140/gt.2018.22.1
%F GT_2018_22_1_a0
Parker, Brett. De Rham theory of exploded manifolds. Geometry & topology, Tome 22 (2018) no. 1, pp. 1-54. doi : 10.2140/gt.2018.22.1. http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.1/

[1] R Bott, L W Tu, Differential forms in algebraic topology, 82, Springer (1982) | DOI

[2] B Parker, Exploded fibrations, from: "Proceedings of Gökova Geometry–Topology Conference 2006" (editors S Akbulut, T Önder, R J Stern), GGT (2007) 52

[3] B Parker, Exploded manifolds, Adv. Math. 229 (2012) 3256 | DOI

[4] B Parker, Integral counts of pseudo-holomorphic curves, preprint (2013)

[5] B Parker, Holomorphic curves in exploded manifolds: compactness, Adv. Math. 283 (2015) 377 | DOI

[6] L Ramshaw, J Basch, Orienting transverse fiber products, technical report (2009)

Cité par Sources :