The codimension-one cohomology of SLnℤ
Geometry & topology, Tome 21 (2017) no. 2, pp. 999-1032.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We prove that Hn 2 1(SLn; ) = 0, where n 2 is the cohomological dimension of SLn, and similarly for GLn. We also prove analogous vanishing theorems for cohomology with coefficients in a rational representation of the algebraic group GLn. These theorems are derived from a presentation of the Steinberg module for SLn whose generators are integral apartment classes, generalizing Manin’s presentation for the Steinberg module of SL2. This presentation was originally constructed by Bykovskiĭ. We give a new topological proof of it.

DOI : 10.2140/gt.2017.21.999
Classification : 11F75
Keywords: cohomology of arithmetic groups, Steinberg module, partial bases

Church, Thomas 1 ; Putman, Andrew 2

1 Department of Mathematics, Stanford University, 450 Serra Mall, Stanford, CA 94305, United States
2 Department of Mathematics, University of Notre Dame, 255 Hurley, Notre Dame, IN 46556, United States
@article{GT_2017_21_2_a6,
     author = {Church, Thomas and Putman, Andrew},
     title = {The codimension-one cohomology of {SLn\ensuremath{\mathbb{Z}}}},
     journal = {Geometry & topology},
     pages = {999--1032},
     publisher = {mathdoc},
     volume = {21},
     number = {2},
     year = {2017},
     doi = {10.2140/gt.2017.21.999},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2017.21.999/}
}
TY  - JOUR
AU  - Church, Thomas
AU  - Putman, Andrew
TI  - The codimension-one cohomology of SLnℤ
JO  - Geometry & topology
PY  - 2017
SP  - 999
EP  - 1032
VL  - 21
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2017.21.999/
DO  - 10.2140/gt.2017.21.999
ID  - GT_2017_21_2_a6
ER  - 
%0 Journal Article
%A Church, Thomas
%A Putman, Andrew
%T The codimension-one cohomology of SLnℤ
%J Geometry & topology
%D 2017
%P 999-1032
%V 21
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2017.21.999/
%R 10.2140/gt.2017.21.999
%F GT_2017_21_2_a6
Church, Thomas; Putman, Andrew. The codimension-one cohomology of SLnℤ. Geometry & topology, Tome 21 (2017) no. 2, pp. 999-1032. doi : 10.2140/gt.2017.21.999. http://geodesic.mathdoc.fr/articles/10.2140/gt.2017.21.999/

[1] A Ash, L Rudolph, The modular symbol and continued fractions in higher dimensions, Invent. Math. 55 (1979) 241 | DOI

[2] A Borel, Stable real cohomology of arithmetic groups, Ann. Sci. École Norm. Sup. 7 (1974) 235

[3] A Borel, J P Serre, Corners and arithmetic groups, Comment. Math. Helv. 48 (1973) 436 | DOI

[4] K S Brown, Buildings, Springer (1989) | DOI

[5] K S Brown, Cohomology of groups, 87, Springer (1994) | DOI

[6] V A Bykovskiĭ, Generating elements of the annihilating ideal for modular symbols, Funktsional. Anal. i Prilozhen. 37 (2003) 27

[7] T Church, B Farb, A Putman, A stability conjecture for the unstable cohomology of SLnZ, mapping class groups, and Aut(Fn), from: "Algebraic topology: applications and new directions" (editors U Tillmann, S Galatius, D Sinha), Contemp. Math. 620, Amer. Math. Soc. (2014) 55 | DOI

[8] T Church, B Farb, A Putman, Integrality in the Steinberg module and the top-dimensional cohomology of n(OK), preprint (2015)

[9] M Day, A Putman, On the second homology group of the Torelli subgroup of (Fn), preprint (2014)

[10] D C Isaksen, A cohomological viewpoint on elementary school arithmetic, Amer. Math. Monthly 109 (2002) 796 | DOI

[11] R Lee, R H Szczarba, On the homology and cohomology of congruence subgroups, Invent. Math. 33 (1976) 15 | DOI

[12] H Maazen, Homology stability for the general linear group, PhD thesis, University of Utrecht (1979)

[13] J I Manin, Parabolic points and zeta functions of modular curves, Izv. Akad. Nauk SSSR Ser. Mat. 36 (1972) 19

[14] D Quillen, Homotopy properties of the poset of nontrivial p–subgroups of a group, Adv. in Math. 28 (1978) 101 | DOI

[15] E C Zeeman, Relative simplicial approximation, Proc. Cambridge Philos. Soc. 60 (1964) 39 | DOI

Cité par Sources :