Equidistribution for sequences of line bundles on normal Kähler spaces
Geometry & topology, Tome 21 (2017) no. 2, pp. 923-962.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We study the asymptotics of Fubini–Study currents and zeros of random holomorphic sections associated to a sequence of singular Hermitian line bundles on a compact normal Kähler complex space.

DOI : 10.2140/gt.2017.21.923
Classification : 32L10, 32A60, 32C20, 32U40, 81Q50
Keywords: Bergman kernel function, Fubini–Study current, singular Hermitian metric, compact normal Kähler complex space, zeros of random holomorphic sections

Coman, Dan 1 ; Ma, Xiaonan 2 ; Marinescu, George 3

1 Department of Mathematics, Syracuse University, Syracuse, NY 13244-1150, United States
2 UFR de Mathématiques, Institut Universitaire de France & Université Paris Diderot - Paris 7, Case 7012, 75205 Paris Cedex 13, France
3 Mathematisches Institut, Universität zu Köln, Weyertal 86-90, D-50931 Köln, Germany
@article{GT_2017_21_2_a4,
     author = {Coman, Dan and Ma, Xiaonan and Marinescu, George},
     title = {Equidistribution for sequences of line bundles on normal {K\"ahler} spaces},
     journal = {Geometry & topology},
     pages = {923--962},
     publisher = {mathdoc},
     volume = {21},
     number = {2},
     year = {2017},
     doi = {10.2140/gt.2017.21.923},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2017.21.923/}
}
TY  - JOUR
AU  - Coman, Dan
AU  - Ma, Xiaonan
AU  - Marinescu, George
TI  - Equidistribution for sequences of line bundles on normal Kähler spaces
JO  - Geometry & topology
PY  - 2017
SP  - 923
EP  - 962
VL  - 21
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2017.21.923/
DO  - 10.2140/gt.2017.21.923
ID  - GT_2017_21_2_a4
ER  - 
%0 Journal Article
%A Coman, Dan
%A Ma, Xiaonan
%A Marinescu, George
%T Equidistribution for sequences of line bundles on normal Kähler spaces
%J Geometry & topology
%D 2017
%P 923-962
%V 21
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2017.21.923/
%R 10.2140/gt.2017.21.923
%F GT_2017_21_2_a4
Coman, Dan; Ma, Xiaonan; Marinescu, George. Equidistribution for sequences of line bundles on normal Kähler spaces. Geometry & topology, Tome 21 (2017) no. 2, pp. 923-962. doi : 10.2140/gt.2017.21.923. http://geodesic.mathdoc.fr/articles/10.2140/gt.2017.21.923/

[1] A Andreotti, Théorèmes de dépendance algébrique sur les espaces complexes pseudo-concaves, Bull. Soc. Math. France 91 (1963) 1

[2] A Ash, D Mumford, M Rapoport, Y S Tai, Smooth compactifications of locally symmetric varieties, Cambridge University Press (2010) | DOI

[3] W L Baily Jr., A Borel, Compactification of arithmetic quotients of bounded symmetric domains, Ann. of Math. 84 (1966) 442 | DOI

[4] T Bayraktar, Equidistribution of zeros of random holomorphic sections, Indiana Univ. Math. J. 65 (2016) 1759 | DOI

[5] B Berndtsson, Bergman kernels related to Hermitian line bundles over compact complex manifolds, from: "Explorations in complex and Riemannian geometry" (editors J Bland, K T Kim, S G Krantz), Contemp. Math. 332, Amer. Math. Soc. (2003) 1 | DOI

[6] E Bierstone, P D Milman, Canonical desingularization in characteristic zero by blowing up the maximum strata of a local invariant, Invent. Math. 128 (1997) 207 | DOI

[7] T Bloom, N Levenberg, Random polynomials and pluripotential-theoretic extremal functions, Potential Anal. 42 (2015) 311 | DOI

[8] S Boucksom, On the volume of a line bundle, Internat. J. Math. 13 (2002) 1043 | DOI

[9] D Catlin, The Bergman kernel and a theorem of Tian, from: "Analysis and geometry in several complex variables" (editors G Komatsu, M Kuranishi), Birkhäuser (1999) 1 | DOI

[10] D Coman, G Marinescu, Convergence of Fubini–Study currents for orbifold line bundles, Internat. J. Math. 24 (2013) | DOI

[11] D Coman, G Marinescu, On the approximation of positive closed currents on compact Kähler manifolds, Math. Rep. (Bucur.) 15 (2013) 373

[12] D Coman, G Marinescu, Equidistribution results for singular metrics on line bundles, Ann. Sci. Éc. Norm. Supér. 48 (2015) 497

[13] X Dai, K Liu, X Ma, On the asymptotic expansion of Bergman kernel, J. Differential Geom. 72 (2006) 1

[14] J P Demailly, Courants positifs extrêmaux et conjecture de Hodge, Invent. Math. 69 (1982) 347 | DOI

[15] J P Demailly, Estimations L2 pour l’opérateur ∂ d’un fibré vectoriel holomorphe semi-positif au-dessus d’une variété kählérienne complète, Ann. Sci. École Norm. Sup. 15 (1982) 457

[16] J P Demailly, Mesures de Monge–Ampère et caractérisation géométrique des variétés algébriques affines, 19, Soc. Math. France (1985) 124

[17] J P Demailly, Regularization of closed positive currents and intersection theory, J. Algebraic Geom. 1 (1992) 361

[18] J P Demailly, Singular Hermitian metrics on positive line bundles, from: "Complex algebraic varieties" (editors K Hulek, T Peternell, M Schneider, F O Schreyer), Lecture Notes in Math. 1507, Springer (1992) 87 | DOI

[19] J P Demailly, A numerical criterion for very ample line bundles, J. Differential Geom. 37 (1993) 323

[20] T C Dinh, G Marinescu, V Schmidt, Equidistribution of zeros of holomorphic sections in the non-compact setting, J. Stat. Phys. 148 (2012) 113 | DOI

[21] T C Dinh, V A Nguyên, N Sibony, Dynamics of horizontal-like maps in higher dimension, Adv. Math. 219 (2008) 1689 | DOI

[22] T C Dinh, N Sibony, Distribution des valeurs de transformations méromorphes et applications, Comment. Math. Helv. 81 (2006) 221 | DOI

[23] T C Dinh, N Sibony, Dynamics in several complex variables: endomorphisms of projective spaces and polynomial-like mappings, from: "Holomorphic dynamical systems" (editors G Gentili, J Guenot, G Patrizio), Lecture Notes in Math. 1998, Springer (2010) 165 | DOI

[24] S K Donaldson, Kähler metrics with cone singularities along a divisor, from: "Essays in mathematics and its applications" (editors P M Pardalos, T M Rassias), Springer (2012) 49 | DOI

[25] P Eyssidieux, V Guedj, A Zeriahi, Singular Kähler–Einstein metrics, J. Amer. Math. Soc. 22 (2009) 607 | DOI

[26] J E Fornæss, R Narasimhan, The Levi problem on complex spaces with singularities, Math. Ann. 248 (1980) 47 | DOI

[27] J E Fornæss, N Sibony, Oka’s inequality for currents and applications, Math. Ann. 301 (1995) 399 | DOI

[28] D Gayet, J Y Welschinger, What is the total Betti number of a random real hypersurface ?, J. Reine Angew. Math. 689 (2014) 137 | DOI

[29] C Grant Melles, P Milman, Classical Poincaré metric pulled back off singularities using a Chow-type theorem and desingularization, Ann. Fac. Sci. Toulouse Math. 15 (2006) 689

[30] H Grauert, Über Modifikationen und exzeptionelle analytische Mengen, Math. Ann. 146 (1962) 331 | DOI

[31] H Grauert, R Remmert, Plurisubharmonische Funktionen in komplexen Räumen, Math. Z. 65 (1956) 175 | DOI

[32] H Grauert, R Remmert, Coherent analytic sheaves, 265, Springer (1984) | DOI

[33] V Guedj, Approximation of currents on complex manifolds, Math. Ann. 313 (1999) 437 | DOI

[34] V Guedj, A Zeriahi, Intrinsic capacities on compact Kähler manifolds, J. Geom. Anal. 15 (2005) 607 | DOI

[35] L Hörmander, An introduction to complex analysis in several variables, 7, North-Holland (1990)

[36] L Hörmander, Notions of convexity, 127, Birkhäuser (1994) | DOI

[37] C Y Hsiao, G Marinescu, Asymptotics of spectral function of lower energy forms and Bergman kernel of semi-positive and big line bundles, Comm. Anal. Geom. 22 (2014) 1 | DOI

[38] S Ji, B Shiffman, Properties of compact complex manifolds carrying closed positive currents, J. Geom. Anal. 3 (1993) 37 | DOI

[39] J Kollár, T Matsusaka, Riemann–Roch type inequalities, Amer. J. Math. 105 (1983) 229 | DOI

[40] X Ma, G Marinescu, Holomorphic Morse inequalities and Bergman kernels, 254, Birkhäuser (2007) | DOI

[41] X Ma, G Marinescu, Generalized Bergman kernels on symplectic manifolds, Adv. Math. 217 (2008) 1756 | DOI

[42] G Marinescu, A criterion for Moishezon spaces with isolated singularities, Ann. Mat. Pura Appl. 184 (2005) 1 | DOI

[43] B G Moĭšezon, Resolution theorems for compact complex spaces with a sufficiently large field of meromorphic functions, Izv. Akad. Nauk SSSR Ser. Mat. 31 (1967) 1385

[44] D Mumford, Hirzebruch’s proportionality theorem in the noncompact case, Invent. Math. 42 (1977) 239 | DOI

[45] R Narasimhan, The Levi problem for complex spaces, II, Math. Ann. 146 (1962) 195 | DOI

[46] L I Nicolaescu, N Savale, The Gauss–Bonnet–Chern theorem : a probabilistic perspective, Trans. Amer. Math. Soc. 369 (2017) 2951 | DOI

[47] S Nonnenmacher, A Voros, Chaotic eigenfunctions in phase space, J. Statist. Phys. 92 (1998) 431 | DOI

[48] T Ohsawa, Hodge spectral sequence and symmetry on compact Kähler spaces, Publ. Res. Inst. Math. Sci. 23 (1987) 613 | DOI

[49] T Ohsawa, K Takegoshi, On the extension of L2 holomorphic functions, Math. Z. 195 (1987) 197 | DOI

[50] K Oka, Sur les fonctions des plusieurs variables, III : Deuxième problème de Cousin, J. Sc. Hiroshima Univ. 9 (1939) 7

[51] R Richberg, Stetige streng pseudokonvexe Funktionen, Math. Ann. 175 (1968) 257 | DOI

[52] W D Ruan, Canonical coordinates and Bergmann [sic] metrics, Comm. Anal. Geom. 6 (1998) 589 | DOI

[53] I Satake, On compactifications of the quotient spaces for arithmetically defined discontinuous groups, Ann. of Math. 72 (1960) 555 | DOI

[54] B Shiffman, Convergence of random zeros on complex manifolds, Sci. China Ser. A 51 (2008) 707 | DOI

[55] B Shiffman, S Zelditch, Distribution of zeros of random and quantum chaotic sections of positive line bundles, Comm. Math. Phys. 200 (1999) 661 | DOI

[56] B Shiffman, S Zelditch, Number variance of random zeros on complex manifolds, Geom. Funct. Anal. 18 (2008) 1422 | DOI

[57] G Tian, On a set of polarized Kähler metrics on algebraic manifolds, J. Differential Geom. 32 (1990) 99

[58] G Tian, Kähler–Einstein metrics on algebraic manifolds, from: "Transcendental methods in algebraic geometry" (editors F Catanese, C Ciliberto), Lecture Notes in Math. 1646, Springer (1996) 143 | DOI

[59] S Zelditch, Szegő kernels and a theorem of Tian, Internat. Math. Res. Notices 1998 (1998) 317 | DOI

Cité par Sources :