Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We study the asymptotics of Fubini–Study currents and zeros of random holomorphic sections associated to a sequence of singular Hermitian line bundles on a compact normal Kähler complex space.
Coman, Dan 1 ; Ma, Xiaonan 2 ; Marinescu, George 3
@article{GT_2017_21_2_a4, author = {Coman, Dan and Ma, Xiaonan and Marinescu, George}, title = {Equidistribution for sequences of line bundles on normal {K\"ahler} spaces}, journal = {Geometry & topology}, pages = {923--962}, publisher = {mathdoc}, volume = {21}, number = {2}, year = {2017}, doi = {10.2140/gt.2017.21.923}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2017.21.923/} }
TY - JOUR AU - Coman, Dan AU - Ma, Xiaonan AU - Marinescu, George TI - Equidistribution for sequences of line bundles on normal Kähler spaces JO - Geometry & topology PY - 2017 SP - 923 EP - 962 VL - 21 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2017.21.923/ DO - 10.2140/gt.2017.21.923 ID - GT_2017_21_2_a4 ER -
%0 Journal Article %A Coman, Dan %A Ma, Xiaonan %A Marinescu, George %T Equidistribution for sequences of line bundles on normal Kähler spaces %J Geometry & topology %D 2017 %P 923-962 %V 21 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.2140/gt.2017.21.923/ %R 10.2140/gt.2017.21.923 %F GT_2017_21_2_a4
Coman, Dan; Ma, Xiaonan; Marinescu, George. Equidistribution for sequences of line bundles on normal Kähler spaces. Geometry & topology, Tome 21 (2017) no. 2, pp. 923-962. doi : 10.2140/gt.2017.21.923. http://geodesic.mathdoc.fr/articles/10.2140/gt.2017.21.923/
[1] Théorèmes de dépendance algébrique sur les espaces complexes pseudo-concaves, Bull. Soc. Math. France 91 (1963) 1
,[2] Smooth compactifications of locally symmetric varieties, Cambridge University Press (2010) | DOI
, , , ,[3] Compactification of arithmetic quotients of bounded symmetric domains, Ann. of Math. 84 (1966) 442 | DOI
, ,[4] Equidistribution of zeros of random holomorphic sections, Indiana Univ. Math. J. 65 (2016) 1759 | DOI
,[5] Bergman kernels related to Hermitian line bundles over compact complex manifolds, from: "Explorations in complex and Riemannian geometry" (editors J Bland, K T Kim, S G Krantz), Contemp. Math. 332, Amer. Math. Soc. (2003) 1 | DOI
,[6] Canonical desingularization in characteristic zero by blowing up the maximum strata of a local invariant, Invent. Math. 128 (1997) 207 | DOI
, ,[7] Random polynomials and pluripotential-theoretic extremal functions, Potential Anal. 42 (2015) 311 | DOI
, ,[8] On the volume of a line bundle, Internat. J. Math. 13 (2002) 1043 | DOI
,[9] The Bergman kernel and a theorem of Tian, from: "Analysis and geometry in several complex variables" (editors G Komatsu, M Kuranishi), Birkhäuser (1999) 1 | DOI
,[10] Convergence of Fubini–Study currents for orbifold line bundles, Internat. J. Math. 24 (2013) | DOI
, ,[11] On the approximation of positive closed currents on compact Kähler manifolds, Math. Rep. (Bucur.) 15 (2013) 373
, ,[12] Equidistribution results for singular metrics on line bundles, Ann. Sci. Éc. Norm. Supér. 48 (2015) 497
, ,[13] On the asymptotic expansion of Bergman kernel, J. Differential Geom. 72 (2006) 1
, , ,[14] Courants positifs extrêmaux et conjecture de Hodge, Invent. Math. 69 (1982) 347 | DOI
,[15] Estimations L2 pour l’opérateur ∂ d’un fibré vectoriel holomorphe semi-positif au-dessus d’une variété kählérienne complète, Ann. Sci. École Norm. Sup. 15 (1982) 457
,[16] Mesures de Monge–Ampère et caractérisation géométrique des variétés algébriques affines, 19, Soc. Math. France (1985) 124
,[17] Regularization of closed positive currents and intersection theory, J. Algebraic Geom. 1 (1992) 361
,[18] Singular Hermitian metrics on positive line bundles, from: "Complex algebraic varieties" (editors K Hulek, T Peternell, M Schneider, F O Schreyer), Lecture Notes in Math. 1507, Springer (1992) 87 | DOI
,[19] A numerical criterion for very ample line bundles, J. Differential Geom. 37 (1993) 323
,[20] Equidistribution of zeros of holomorphic sections in the non-compact setting, J. Stat. Phys. 148 (2012) 113 | DOI
, , ,[21] Dynamics of horizontal-like maps in higher dimension, Adv. Math. 219 (2008) 1689 | DOI
, , ,[22] Distribution des valeurs de transformations méromorphes et applications, Comment. Math. Helv. 81 (2006) 221 | DOI
, ,[23] Dynamics in several complex variables: endomorphisms of projective spaces and polynomial-like mappings, from: "Holomorphic dynamical systems" (editors G Gentili, J Guenot, G Patrizio), Lecture Notes in Math. 1998, Springer (2010) 165 | DOI
, ,[24] Kähler metrics with cone singularities along a divisor, from: "Essays in mathematics and its applications" (editors P M Pardalos, T M Rassias), Springer (2012) 49 | DOI
,[25] Singular Kähler–Einstein metrics, J. Amer. Math. Soc. 22 (2009) 607 | DOI
, , ,[26] The Levi problem on complex spaces with singularities, Math. Ann. 248 (1980) 47 | DOI
, ,[27] Oka’s inequality for currents and applications, Math. Ann. 301 (1995) 399 | DOI
, ,[28] What is the total Betti number of a random real hypersurface ?, J. Reine Angew. Math. 689 (2014) 137 | DOI
, ,[29] Classical Poincaré metric pulled back off singularities using a Chow-type theorem and desingularization, Ann. Fac. Sci. Toulouse Math. 15 (2006) 689
, ,[30] Über Modifikationen und exzeptionelle analytische Mengen, Math. Ann. 146 (1962) 331 | DOI
,[31] Plurisubharmonische Funktionen in komplexen Räumen, Math. Z. 65 (1956) 175 | DOI
, ,[32] Coherent analytic sheaves, 265, Springer (1984) | DOI
, ,[33] Approximation of currents on complex manifolds, Math. Ann. 313 (1999) 437 | DOI
,[34] Intrinsic capacities on compact Kähler manifolds, J. Geom. Anal. 15 (2005) 607 | DOI
, ,[35] An introduction to complex analysis in several variables, 7, North-Holland (1990)
,[36] Notions of convexity, 127, Birkhäuser (1994) | DOI
,[37] Asymptotics of spectral function of lower energy forms and Bergman kernel of semi-positive and big line bundles, Comm. Anal. Geom. 22 (2014) 1 | DOI
, ,[38] Properties of compact complex manifolds carrying closed positive currents, J. Geom. Anal. 3 (1993) 37 | DOI
, ,[39] Riemann–Roch type inequalities, Amer. J. Math. 105 (1983) 229 | DOI
, ,[40] Holomorphic Morse inequalities and Bergman kernels, 254, Birkhäuser (2007) | DOI
, ,[41] Generalized Bergman kernels on symplectic manifolds, Adv. Math. 217 (2008) 1756 | DOI
, ,[42] A criterion for Moishezon spaces with isolated singularities, Ann. Mat. Pura Appl. 184 (2005) 1 | DOI
,[43] Resolution theorems for compact complex spaces with a sufficiently large field of meromorphic functions, Izv. Akad. Nauk SSSR Ser. Mat. 31 (1967) 1385
,[44] Hirzebruch’s proportionality theorem in the noncompact case, Invent. Math. 42 (1977) 239 | DOI
,[45] The Levi problem for complex spaces, II, Math. Ann. 146 (1962) 195 | DOI
,[46] The Gauss–Bonnet–Chern theorem : a probabilistic perspective, Trans. Amer. Math. Soc. 369 (2017) 2951 | DOI
, ,[47] Chaotic eigenfunctions in phase space, J. Statist. Phys. 92 (1998) 431 | DOI
, ,[48] Hodge spectral sequence and symmetry on compact Kähler spaces, Publ. Res. Inst. Math. Sci. 23 (1987) 613 | DOI
,[49] On the extension of L2 holomorphic functions, Math. Z. 195 (1987) 197 | DOI
, ,[50] Sur les fonctions des plusieurs variables, III : Deuxième problème de Cousin, J. Sc. Hiroshima Univ. 9 (1939) 7
,[51] Stetige streng pseudokonvexe Funktionen, Math. Ann. 175 (1968) 257 | DOI
,[52] Canonical coordinates and Bergmann [sic] metrics, Comm. Anal. Geom. 6 (1998) 589 | DOI
,[53] On compactifications of the quotient spaces for arithmetically defined discontinuous groups, Ann. of Math. 72 (1960) 555 | DOI
,[54] Convergence of random zeros on complex manifolds, Sci. China Ser. A 51 (2008) 707 | DOI
,[55] Distribution of zeros of random and quantum chaotic sections of positive line bundles, Comm. Math. Phys. 200 (1999) 661 | DOI
, ,[56] Number variance of random zeros on complex manifolds, Geom. Funct. Anal. 18 (2008) 1422 | DOI
, ,[57] On a set of polarized Kähler metrics on algebraic manifolds, J. Differential Geom. 32 (1990) 99
,[58] Kähler–Einstein metrics on algebraic manifolds, from: "Transcendental methods in algebraic geometry" (editors F Catanese, C Ciliberto), Lecture Notes in Math. 1646, Springer (1996) 143 | DOI
,[59] Szegő kernels and a theorem of Tian, Internat. Math. Res. Notices 1998 (1998) 317 | DOI
,Cité par Sources :