Modular operads of embedded curves
Geometry & topology, Tome 21 (2017) no. 2, pp. 903-922.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

For each k 5, we construct a modular operad ¯k of “k–log-canonically embedded” curves. We also construct, for k 2, a stable cyclic operad ¯ck of such curves, and, for k 1, a cyclic operad ¯0,ck of “k–log-canonically embedded” rational curves.

DOI : 10.2140/gt.2017.21.903
Classification : 14H10, 18D50
Keywords: modular operad, log-canonical Hilbert scheme

Kondo, Satoshi 1 ; Siegel, Charles 2 ; Wolfson, Jesse 3

1 Faculty of Mathematics, Higher School of Economics, National Research University, 6 Usacheva Str., Moscow, 119048, Russia
2 Pacific Northwest National Laboratory, 902 Battelle Blvd, Richland, WA 99354, United States
3 Department of Mathematics, University of Chicago, 5734 S University Ave., Chicago, IL 60637, United States
@article{GT_2017_21_2_a3,
     author = {Kondo, Satoshi and Siegel, Charles and Wolfson, Jesse},
     title = {Modular operads of embedded curves},
     journal = {Geometry & topology},
     pages = {903--922},
     publisher = {mathdoc},
     volume = {21},
     number = {2},
     year = {2017},
     doi = {10.2140/gt.2017.21.903},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2017.21.903/}
}
TY  - JOUR
AU  - Kondo, Satoshi
AU  - Siegel, Charles
AU  - Wolfson, Jesse
TI  - Modular operads of embedded curves
JO  - Geometry & topology
PY  - 2017
SP  - 903
EP  - 922
VL  - 21
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2017.21.903/
DO  - 10.2140/gt.2017.21.903
ID  - GT_2017_21_2_a3
ER  - 
%0 Journal Article
%A Kondo, Satoshi
%A Siegel, Charles
%A Wolfson, Jesse
%T Modular operads of embedded curves
%J Geometry & topology
%D 2017
%P 903-922
%V 21
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2017.21.903/
%R 10.2140/gt.2017.21.903
%F GT_2017_21_2_a3
Kondo, Satoshi; Siegel, Charles; Wolfson, Jesse. Modular operads of embedded curves. Geometry & topology, Tome 21 (2017) no. 2, pp. 903-922. doi : 10.2140/gt.2017.21.903. http://geodesic.mathdoc.fr/articles/10.2140/gt.2017.21.903/

[1] E Getzler, M M Kapranov, Modular operads, Compositio Math. 110 (1998) 65 | DOI

[2] R Hartshorne, Algebraic geometry, 52, Springer (1977) | DOI

[3] M M Kapranov, Veronese curves and Grothendieck–Knudsen moduli space M0,n, J. Algebraic Geom. 2 (1993) 239

[4] F F Knudsen, The projectivity of the moduli space of stable curves, II : The stacks Mg,n, Math. Scand. 52 (1983) 161 | DOI

[5] I Madsen, M Weiss, The stable moduli space of Riemann surfaces : Mumford’s conjecture, Ann. of Math. 165 (2007) 843 | DOI

Cité par Sources :