Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
For each , we construct a modular operad of “–log-canonically embedded” curves. We also construct, for , a stable cyclic operad of such curves, and, for , a cyclic operad of “–log-canonically embedded” rational curves.
Kondo, Satoshi 1 ; Siegel, Charles 2 ; Wolfson, Jesse 3
@article{GT_2017_21_2_a3, author = {Kondo, Satoshi and Siegel, Charles and Wolfson, Jesse}, title = {Modular operads of embedded curves}, journal = {Geometry & topology}, pages = {903--922}, publisher = {mathdoc}, volume = {21}, number = {2}, year = {2017}, doi = {10.2140/gt.2017.21.903}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2017.21.903/} }
TY - JOUR AU - Kondo, Satoshi AU - Siegel, Charles AU - Wolfson, Jesse TI - Modular operads of embedded curves JO - Geometry & topology PY - 2017 SP - 903 EP - 922 VL - 21 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2017.21.903/ DO - 10.2140/gt.2017.21.903 ID - GT_2017_21_2_a3 ER -
Kondo, Satoshi; Siegel, Charles; Wolfson, Jesse. Modular operads of embedded curves. Geometry & topology, Tome 21 (2017) no. 2, pp. 903-922. doi : 10.2140/gt.2017.21.903. http://geodesic.mathdoc.fr/articles/10.2140/gt.2017.21.903/
[1] Modular operads, Compositio Math. 110 (1998) 65 | DOI
, ,[2] Algebraic geometry, 52, Springer (1977) | DOI
,[3] Veronese curves and Grothendieck–Knudsen moduli space M0,n, J. Algebraic Geom. 2 (1993) 239
,[4] The projectivity of the moduli space of stable curves, II : The stacks Mg,n, Math. Scand. 52 (1983) 161 | DOI
,[5] The stable moduli space of Riemann surfaces : Mumford’s conjecture, Ann. of Math. 165 (2007) 843 | DOI
, ,Cité par Sources :