Analytic nonabelian Hodge theory
Geometry & topology, Tome 21 (2017) no. 2, pp. 841-902.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

The proalgebraic fundamental group can be understood as a completion with respect to finite-dimensional noncommutative algebras. We introduce finer invariants by looking at completions with respect to Banach and C–algebras, from which we can recover analytic and topological representation spaces, respectively. For a compact Kähler manifold, the C–completion also gives the natural setting for nonabelian Hodge theory; it has a pure Hodge structure, in the form of a pro-C–dynamical system. Its representations are pluriharmonic local systems in Hilbert spaces, and we study their cohomology, giving a principle of two types, and splittings of the Hodge and twistor structures.

DOI : 10.2140/gt.2017.21.841
Classification : 32G13, 32G20
Keywords: nonabelian Hodge theory, twistor structures, $C^*$–algebras

Pridham, Jonathan 1

1 School of Mathematics and Maxwell Institute, The University of Edinburgh, James Clerk Maxwell Building, The King’s Buildings Mayfield Road, Edinburgh, EH9 3FD, United Kingdom
@article{GT_2017_21_2_a2,
     author = {Pridham, Jonathan},
     title = {Analytic nonabelian {Hodge} theory},
     journal = {Geometry & topology},
     pages = {841--902},
     publisher = {mathdoc},
     volume = {21},
     number = {2},
     year = {2017},
     doi = {10.2140/gt.2017.21.841},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2017.21.841/}
}
TY  - JOUR
AU  - Pridham, Jonathan
TI  - Analytic nonabelian Hodge theory
JO  - Geometry & topology
PY  - 2017
SP  - 841
EP  - 902
VL  - 21
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2017.21.841/
DO  - 10.2140/gt.2017.21.841
ID  - GT_2017_21_2_a2
ER  - 
%0 Journal Article
%A Pridham, Jonathan
%T Analytic nonabelian Hodge theory
%J Geometry & topology
%D 2017
%P 841-902
%V 21
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2017.21.841/
%R 10.2140/gt.2017.21.841
%F GT_2017_21_2_a2
Pridham, Jonathan. Analytic nonabelian Hodge theory. Geometry & topology, Tome 21 (2017) no. 2, pp. 841-902. doi : 10.2140/gt.2017.21.841. http://geodesic.mathdoc.fr/articles/10.2140/gt.2017.21.841/

[1] C A Akemann, F W Shultz, Perfect C∗–algebras, 326, Amer. Math. Soc. (1985) | DOI

[2] J Amorós, M Burger, K Corlette, D Kotschick, D Toledo, Fundamental groups of compact Kähler manifolds, 44, Amer. Math. Soc. (1996) | DOI

[3] K Bichteler, A generalization to the non-separable case of Takesaki’s duality theorem for C∗–algebras, Invent. Math. 9 (1969) 89 | DOI

[4] J W Bunce, J A Deddens, C∗–algebras with Hausdorff spectrum, Trans. Amer. Math. Soc. 212 (1975) 199 | DOI

[5] K Corlette, Flat G–bundles with canonical metrics, J. Differential Geom. 28 (1988) 361

[6] P Deligne, Théorie de Hodge, II, Inst. Hautes Études Sci. Publ. Math. 40 (1971) 5

[7] P Deligne, J S Milne, A Ogus, K Y Shih, Hodge cycles, motives, and Shimura varieties, 900, Springer (1982) | DOI

[8] J Dodziuk, De Rham–Hodge theory for L2–cohomology of infinite coverings, Topology 16 (1977) 157 | DOI

[9] L T Gardner, On isomorphisms of C∗–algebras, Amer. J. Math. 87 (1965) 384 | DOI

[10] W M Goldman, J J Millson, The deformation theory of representations of fundamental groups of compact Kähler manifolds, Inst. Hautes Études Sci. Publ. Math. 67 (1988) 43

[11] K R Goodearl, Notes on real and complex C∗–algebras, 5, Shiva (1982)

[12] P Griffiths, J Harris, Principles of algebraic geometry, Interscience (1978) | DOI

[13] A Grothendieck, Technique de descente et théorèmes d’existence en géométrie algébrique, II : Le théorème d’existence en théorie formelle des modules, from: "Séminaire Bourbaki 1959/1960", W A Benjamin (1966)

[14] N J Hitchin, The self-duality equations on a Riemann surface, Proc. London Math. Soc. 55 (1987) 59 | DOI

[15] S Kobayashi, K Nomizu, Foundations of differential geometry, I, Interscience (1963)

[16] V I Paulsen, Completely bounded homomorphisms of operator algebras, Proc. Amer. Math. Soc. 92 (1984) 225 | DOI

[17] C Pearcy, A complete set of unitary invariants for operators generating finite W∗–algebras of type I, Pacific J. Math. 12 (1962) 1405 | DOI

[18] N C Phillips, Inverse limits of C∗–algebras, J. Operator Theory 19 (1988) 159

[19] J P Pridham, Pro-algebraic homotopy types, Proc. Lond. Math. Soc. 97 (2008) 273 | DOI

[20] J P Pridham, Real non-abelian mixed Hodge structures for quasi-projective varieties : formality and splitting, 1150, Amer. Math. Soc. (2016) | DOI

[21] G A Reid, Epimorphisms and surjectivity, Invent. Math. 9 (1969/1970) 295 | DOI

[22] I E Segal, Two-sided ideals in operator algebras, Ann. of Math. 50 (1949) 856 | DOI

[23] C T Simpson, Higgs bundles and local systems, Inst. Hautes Études Sci. Publ. Math. 75 (1992) 5

[24] C T Simpson, Moduli of representations of the fundamental group of a smooth projective variety, I, Inst. Hautes Études Sci. Publ. Math. 79 (1994) 47

[25] C T Simpson, Moduli of representations of the fundamental group of a smooth projective variety, II, Inst. Hautes Études Sci. Publ. Math. 80 (1994) 5

[26] C Simpson, The Hodge filtration on nonabelian cohomology, from: "Algebraic geometry" (editors J Kollár, R Lazarsfeld, D R Morrison), Proc. Sympos. Pure Math. 62, Amer. Math. Soc. (1997) 217 | DOI

[27] C Simpson, Mixed twistor structures, preprint (1997)

[28] C Simpson, A weight two phenomenon for the moduli of rank one local systems on open varieties, from: "From Hodge theory to integrability and TQFT tt*-geometry" (editors R Y Donagi, K Wendland), Proc. Sympos. Pure Math. 78, Amer. Math. Soc. (2008) 175 | DOI

[29] D Sullivan, Infinitesimal computations in topology, Inst. Hautes Études Sci. Publ. Math. 47 (1977) 269

[30] M Takesaki, Theory of operator algebras, I, Springer (1979)

[31] D P Williams, Crossed products of C∗–algebras, 134, Amer. Math. Soc. (2007) | DOI

Cité par Sources :