Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
The proalgebraic fundamental group can be understood as a completion with respect to finite-dimensional noncommutative algebras. We introduce finer invariants by looking at completions with respect to Banach and –algebras, from which we can recover analytic and topological representation spaces, respectively. For a compact Kähler manifold, the –completion also gives the natural setting for nonabelian Hodge theory; it has a pure Hodge structure, in the form of a pro-–dynamical system. Its representations are pluriharmonic local systems in Hilbert spaces, and we study their cohomology, giving a principle of two types, and splittings of the Hodge and twistor structures.
Pridham, Jonathan 1
@article{GT_2017_21_2_a2, author = {Pridham, Jonathan}, title = {Analytic nonabelian {Hodge} theory}, journal = {Geometry & topology}, pages = {841--902}, publisher = {mathdoc}, volume = {21}, number = {2}, year = {2017}, doi = {10.2140/gt.2017.21.841}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2017.21.841/} }
Pridham, Jonathan. Analytic nonabelian Hodge theory. Geometry & topology, Tome 21 (2017) no. 2, pp. 841-902. doi : 10.2140/gt.2017.21.841. http://geodesic.mathdoc.fr/articles/10.2140/gt.2017.21.841/
[1] Perfect C∗–algebras, 326, Amer. Math. Soc. (1985) | DOI
, ,[2] Fundamental groups of compact Kähler manifolds, 44, Amer. Math. Soc. (1996) | DOI
, , , , ,[3] A generalization to the non-separable case of Takesaki’s duality theorem for C∗–algebras, Invent. Math. 9 (1969) 89 | DOI
,[4] C∗–algebras with Hausdorff spectrum, Trans. Amer. Math. Soc. 212 (1975) 199 | DOI
, ,[5] Flat G–bundles with canonical metrics, J. Differential Geom. 28 (1988) 361
,[6] Théorie de Hodge, II, Inst. Hautes Études Sci. Publ. Math. 40 (1971) 5
,[7] Hodge cycles, motives, and Shimura varieties, 900, Springer (1982) | DOI
, , , ,[8] De Rham–Hodge theory for L2–cohomology of infinite coverings, Topology 16 (1977) 157 | DOI
,[9] On isomorphisms of C∗–algebras, Amer. J. Math. 87 (1965) 384 | DOI
,[10] The deformation theory of representations of fundamental groups of compact Kähler manifolds, Inst. Hautes Études Sci. Publ. Math. 67 (1988) 43
, ,[11] Notes on real and complex C∗–algebras, 5, Shiva (1982)
,[12] Principles of algebraic geometry, Interscience (1978) | DOI
, ,[13] Technique de descente et théorèmes d’existence en géométrie algébrique, II : Le théorème d’existence en théorie formelle des modules, from: "Séminaire Bourbaki 1959/1960", W A Benjamin (1966)
,[14] The self-duality equations on a Riemann surface, Proc. London Math. Soc. 55 (1987) 59 | DOI
,[15] Foundations of differential geometry, I, Interscience (1963)
, ,[16] Completely bounded homomorphisms of operator algebras, Proc. Amer. Math. Soc. 92 (1984) 225 | DOI
,[17] A complete set of unitary invariants for operators generating finite W∗–algebras of type I, Pacific J. Math. 12 (1962) 1405 | DOI
,[18] Inverse limits of C∗–algebras, J. Operator Theory 19 (1988) 159
,[19] Pro-algebraic homotopy types, Proc. Lond. Math. Soc. 97 (2008) 273 | DOI
,[20] Real non-abelian mixed Hodge structures for quasi-projective varieties : formality and splitting, 1150, Amer. Math. Soc. (2016) | DOI
,[21] Epimorphisms and surjectivity, Invent. Math. 9 (1969/1970) 295 | DOI
,[22] Two-sided ideals in operator algebras, Ann. of Math. 50 (1949) 856 | DOI
,[23] Higgs bundles and local systems, Inst. Hautes Études Sci. Publ. Math. 75 (1992) 5
,[24] Moduli of representations of the fundamental group of a smooth projective variety, I, Inst. Hautes Études Sci. Publ. Math. 79 (1994) 47
,[25] Moduli of representations of the fundamental group of a smooth projective variety, II, Inst. Hautes Études Sci. Publ. Math. 80 (1994) 5
,[26] The Hodge filtration on nonabelian cohomology, from: "Algebraic geometry" (editors J Kollár, R Lazarsfeld, D R Morrison), Proc. Sympos. Pure Math. 62, Amer. Math. Soc. (1997) 217 | DOI
,[27] Mixed twistor structures, preprint (1997)
,[28] A weight two phenomenon for the moduli of rank one local systems on open varieties, from: "From Hodge theory to integrability and TQFT tt*-geometry" (editors R Y Donagi, K Wendland), Proc. Sympos. Pure Math. 78, Amer. Math. Soc. (2008) 175 | DOI
,[29] Infinitesimal computations in topology, Inst. Hautes Études Sci. Publ. Math. 47 (1977) 269
,[30] Theory of operator algebras, I, Springer (1979)
,[31] Crossed products of C∗–algebras, 134, Amer. Math. Soc. (2007) | DOI
,Cité par Sources :