Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
Let be a discrete group. For a pair of representations of into with geometrically finite, we study the set of –equivariant Lipschitz maps from the real hyperbolic space to itself that have minimal Lipschitz constant. Our main result is the existence of a geodesic lamination that is “maximally stretched” by all such maps when the minimal constant is at least . As an application, we generalize two-dimensional results and constructions of Thurston and extend his asymmetric metric on Teichmüller space to a geometrically finite setting and to higher dimension. Another application is to actions of discrete subgroups of on by right and left multiplication: we give a double properness criterion for such actions, and prove that for a large class of groups the action remains properly discontinuous after any small deformation of inside .
Guéritaud, François 1 ; Kassel, Fanny 1
@article{GT_2017_21_2_a1, author = {Gu\'eritaud, Fran\c{c}ois and Kassel, Fanny}, title = {Maximally stretched laminations on geometrically finite hyperbolic manifolds}, journal = {Geometry & topology}, pages = {693--840}, publisher = {mathdoc}, volume = {21}, number = {2}, year = {2017}, doi = {10.2140/gt.2017.21.693}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2017.21.693/} }
TY - JOUR AU - Guéritaud, François AU - Kassel, Fanny TI - Maximally stretched laminations on geometrically finite hyperbolic manifolds JO - Geometry & topology PY - 2017 SP - 693 EP - 840 VL - 21 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2017.21.693/ DO - 10.2140/gt.2017.21.693 ID - GT_2017_21_2_a1 ER -
%0 Journal Article %A Guéritaud, François %A Kassel, Fanny %T Maximally stretched laminations on geometrically finite hyperbolic manifolds %J Geometry & topology %D 2017 %P 693-840 %V 21 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.2140/gt.2017.21.693/ %R 10.2140/gt.2017.21.693 %F GT_2017_21_2_a1
Guéritaud, François; Kassel, Fanny. Maximally stretched laminations on geometrically finite hyperbolic manifolds. Geometry & topology, Tome 21 (2017) no. 2, pp. 693-840. doi : 10.2140/gt.2017.21.693. http://geodesic.mathdoc.fr/articles/10.2140/gt.2017.21.693/
[1] Semigroups containing proximal linear maps, Israel J. Math. 91 (1995) 1 | DOI
, , ,[2] Structure of manifolds of nonpositive curvature, II, Ann. of Math. 122 (1985) 205 | DOI
, , ,[3] The Hausdorff dimension of singular sets of properly discontinuous groups, Amer. J. Math. 88 (1966) 722 | DOI
,[4] Actions propres sur les espaces homogènes réductifs, Ann. of Math. 144 (1996) 315 | DOI
,[5] Propriétés asymptotiques des groupes linéaires, Geom. Funct. Anal. 7 (1997) 1 | DOI
,[6] Geodesics with bounded intersection number on surfaces are sparsely distributed, Topology 24 (1985) 217 | DOI
, ,[7] Geometrical finiteness for hyperbolic groups, J. Funct. Anal. 113 (1993) 245 | DOI
,[8] Spaces of geometrically finite representations, Ann. Acad. Sci. Fenn. Math. 23 (1998) 389
,[9] The pressure metric for Anosov representations, Geom. Funct. Anal. 25 (2015) 1089 | DOI
, , , ,[10] Metric spaces of non-positive curvature, 319, Springer (1999) | DOI
, ,[11] The classification of Kleinian surface groups, II : The ending lamination conjecture, Ann. of Math. 176 (2012) 1 | DOI
, , ,[12] Intersection, the Manhattan curve, and Patterson–Sullivan theory in rank 2, Internat. Math. Res. Notices 1993 (1993) 217 | DOI
,[13] Extension of Lipschitz maps into 3–manifolds, Asian J. Math. 5 (2001) 685 | DOI
, ,[14] Séries de Poincaré des groupes géométriquement finis, Israel J. Math. 118 (2000) 109 | DOI
, , ,[15] Groupes du ping-pong et géodésiques fermées en courbure −1, Ann. Inst. Fourier (Grenoble) 46 (1996) 755 | DOI
, ,[16] Geometry and topology of complete Lorentz spacetimes of constant curvature, Ann. Sci. Éc. Norm. Supér. 49 (2016) 1
, , ,[17] Sur la sphère vide, Bull. Acad. Sci. URSS (7) (1934) 793
,[18] Global rigidity of holomorphic Riemannian metrics on compact complex 3–manifolds, Math. Ann. 345 (2009) 53 | DOI
, ,[19] Déformations des structures complexes sur les espaces homogènes de SL(2,C), J. Reine Angew. Math. 468 (1995) 113 | DOI
,[20] Nonstandard Lorentz space forms, J. Differential Geom. 21 (1985) 301
,[21] Differential geometry, Lie groups, and symmetric spaces, 80, Academic Press (1978)
,[22] Proper actions on corank-one reductive homogeneous spaces, J. Lie Theory 18 (2008) 961
,[23] Quotients compacts d’espaces homogènes réels ou p–adiques, PhD thesis, Université Paris-Sud (2009)
,[24] Quotients compacts des groupes ultramétriques de rang un, Ann. Inst. Fourier (Grenoble) 60 (2010) 1741 | DOI
,[25] Poincaré series for non-Riemannian locally symmetric spaces, Adv. Math. 287 (2016) 123 | DOI
, ,[26] Ergodic theory and rigidity on the symmetric space of non-compact type, Ergodic Theory Dynam. Systems 21 (2001) 93 | DOI
,[27] Über die zusammenziehenden und Lipschitzschen Transformationen, Fund. Math. 22 (1934) 77
,[28] Complétude des variétés lorentziennes à courbure constante, Math. Ann. 306 (1996) 353 | DOI
,[29] Proper action on a homogeneous space of reductive type, Math. Ann. 285 (1989) 249 | DOI
,[30] On discontinuous groups acting on homogeneous spaces with noncompact isotropy subgroups, J. Geom. Phys. 12 (1993) 133 | DOI
,[31] Criterion for proper actions on homogeneous spaces of reductive groups, J. Lie Theory 6 (1996) 147
,[32] Deformation of compact Clifford–Klein forms of indefinite-Riemannian homogeneous manifolds, Math. Ann. 310 (1998) 395 | DOI
,[33] 3–dimensional Lorentz space-forms and Seifert fiber spaces, J. Differential Geom. 21 (1985) 231
, ,[34] Renewal theorems in symbolic dynamics, with applications to geodesic flows, non-Euclidean tessellations and their fractal limits, Acta Math. 163 (1989) 1 | DOI
,[35] Extensions of Lipschitz maps into Hadamard spaces, Geom. Funct. Anal. 10 (2000) 1527 | DOI
, , ,[36] Kirszbraun’s theorem and metric spaces of bounded curvature, Geom. Funct. Anal. 7 (1997) 535 | DOI
, ,[37] Extending Lipschitz functions via random metric partitions, Invent. Math. 160 (2005) 59 | DOI
, ,[38] The geometry of finitely generated kleinian groups, Ann. of Math. 99 (1974) 383 | DOI
,[39] Cusps are dense, Ann. of Math. 133 (1991) 217 | DOI
,[40] Hausdorff dimension and conformal dynamics, I : Strong convergence of Kleinian groups, J. Differential Geom. 51 (1999) 471
,[41] Shortening all the simple closed geodesics on surfaces with boundary, Proc. Amer. Math. Soc. 138 (2010) 1775 | DOI
, ,[42] Dégénérescences de sous-groupes discrets de groupes de Lie semisimples et actions de groupes sur des immeubles affines, PhD thesis, Université Paris-Sud 11 (2000)
,[43] The limit set of a Fuchsian group, Acta Math. 136 (1976) 241 | DOI
,[44] Sur la fonction orbitale des groupes discrets en courbure négative, Ann. Inst. Fourier (Grenoble) 52 (2002) 145 | DOI
,[45] Ergodicité et équidistribution en courbure négative, 95, Société Mathématique de France (2003)
,[46] Variétés anti-de Sitter de dimension 3 exotiques, Ann. Inst. Fourier (Grenoble) 50 (2000) 257 | DOI
,[47] On discontinuous groups in higher-dimensional symmetric spaces, from: "Collected papers, I", Springer (1989) 475
,[48] The density at infinity of a discrete group of hyperbolic motions, Inst. Hautes Études Sci. Publ. Math. 50 (1979) 171 | DOI
,[49] Entropy, Hausdorff measures old and new, and limit sets of geometrically finite Kleinian groups, Acta Math. 153 (1984) 259 | DOI
,[50] The geometry and topology of three-manifolds, lecture notes (1979)
,[51] Minimal stretch maps between hyperbolic surfaces, preprint (1986)
,[52] Contractions in non-Euclidean spaces, Bull. Amer. Math. Soc. 50 (1944) 710 | DOI
,[53] On closed anti-de Sitter spacetimes, Math. Ann. 310 (1998) 695 | DOI
,Cité par Sources :