Maximally stretched laminations on geometrically finite hyperbolic manifolds
Geometry & topology, Tome 21 (2017) no. 2, pp. 693-840.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

Let Γ0 be a discrete group. For a pair (j,ρ) of representations of Γ0 into PO(n,1) = Isom(n) with j geometrically finite, we study the set of (j,ρ)–equivariant Lipschitz maps from the real hyperbolic space n to itself that have minimal Lipschitz constant. Our main result is the existence of a geodesic lamination that is “maximally stretched” by all such maps when the minimal constant is at least 1. As an application, we generalize two-dimensional results and constructions of Thurston and extend his asymmetric metric on Teichmüller space to a geometrically finite setting and to higher dimension. Another application is to actions of discrete subgroups Γ of PO(n,1) × PO(n,1) on PO(n,1) by right and left multiplication: we give a double properness criterion for such actions, and prove that for a large class of groups Γ the action remains properly discontinuous after any small deformation of Γ inside PO(n,1) × PO(n,1).

DOI : 10.2140/gt.2017.21.693
Classification : 20H10, 30F60, 32Q05, 53A35, 57S30
Keywords: hyperbolic manifold, geometrical finiteness, Lipschitz extension, proper action, group manifold, geodesic lamination

Guéritaud, François 1 ; Kassel, Fanny 1

1 Laboratoire Paul Painlevé, CNRS & Université Lille 1, 59655 Villeneuve d’Ascq Cedex, France
@article{GT_2017_21_2_a1,
     author = {Gu\'eritaud, Fran\c{c}ois and Kassel, Fanny},
     title = {Maximally stretched laminations on geometrically finite hyperbolic manifolds},
     journal = {Geometry & topology},
     pages = {693--840},
     publisher = {mathdoc},
     volume = {21},
     number = {2},
     year = {2017},
     doi = {10.2140/gt.2017.21.693},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2017.21.693/}
}
TY  - JOUR
AU  - Guéritaud, François
AU  - Kassel, Fanny
TI  - Maximally stretched laminations on geometrically finite hyperbolic manifolds
JO  - Geometry & topology
PY  - 2017
SP  - 693
EP  - 840
VL  - 21
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2017.21.693/
DO  - 10.2140/gt.2017.21.693
ID  - GT_2017_21_2_a1
ER  - 
%0 Journal Article
%A Guéritaud, François
%A Kassel, Fanny
%T Maximally stretched laminations on geometrically finite hyperbolic manifolds
%J Geometry & topology
%D 2017
%P 693-840
%V 21
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2017.21.693/
%R 10.2140/gt.2017.21.693
%F GT_2017_21_2_a1
Guéritaud, François; Kassel, Fanny. Maximally stretched laminations on geometrically finite hyperbolic manifolds. Geometry & topology, Tome 21 (2017) no. 2, pp. 693-840. doi : 10.2140/gt.2017.21.693. http://geodesic.mathdoc.fr/articles/10.2140/gt.2017.21.693/

[1] H Abels, G A Margulis, G A Soĭfer, Semigroups containing proximal linear maps, Israel J. Math. 91 (1995) 1 | DOI

[2] W Ballmann, M Brin, R Spatzier, Structure of manifolds of nonpositive curvature, II, Ann. of Math. 122 (1985) 205 | DOI

[3] A F Beardon, The Hausdorff dimension of singular sets of properly discontinuous groups, Amer. J. Math. 88 (1966) 722 | DOI

[4] Y Benoist, Actions propres sur les espaces homogènes réductifs, Ann. of Math. 144 (1996) 315 | DOI

[5] Y Benoist, Propriétés asymptotiques des groupes linéaires, Geom. Funct. Anal. 7 (1997) 1 | DOI

[6] J S Birman, C Series, Geodesics with bounded intersection number on surfaces are sparsely distributed, Topology 24 (1985) 217 | DOI

[7] B H Bowditch, Geometrical finiteness for hyperbolic groups, J. Funct. Anal. 113 (1993) 245 | DOI

[8] B H Bowditch, Spaces of geometrically finite representations, Ann. Acad. Sci. Fenn. Math. 23 (1998) 389

[9] M Bridgeman, R Canary, F Labourie, A Sambarino, The pressure metric for Anosov representations, Geom. Funct. Anal. 25 (2015) 1089 | DOI

[10] M R Bridson, A Haefliger, Metric spaces of non-positive curvature, 319, Springer (1999) | DOI

[11] J F Brock, R D Canary, Y N Minsky, The classification of Kleinian surface groups, II : The ending lamination conjecture, Ann. of Math. 176 (2012) 1 | DOI

[12] M Burger, Intersection, the Manhattan curve, and Patterson–Sullivan theory in rank 2, Internat. Math. Res. Notices 1993 (1993) 217 | DOI

[13] S Buyalo, V Schroeder, Extension of Lipschitz maps into 3–manifolds, Asian J. Math. 5 (2001) 685 | DOI

[14] F Dal’Bo, J P Otal, M Peigné, Séries de Poincaré des groupes géométriquement finis, Israel J. Math. 118 (2000) 109 | DOI

[15] F Dal’Bo, M Peigné, Groupes du ping-pong et géodésiques fermées en courbure −1, Ann. Inst. Fourier (Grenoble) 46 (1996) 755 | DOI

[16] J Danciger, F Guéritaud, F Kassel, Geometry and topology of complete Lorentz spacetimes of constant curvature, Ann. Sci. Éc. Norm. Supér. 49 (2016) 1

[17] B Delaunay, Sur la sphère vide, Bull. Acad. Sci. URSS (7) (1934) 793

[18] S Dumitrescu, A Zeghib, Global rigidity of holomorphic Riemannian metrics on compact complex 3–manifolds, Math. Ann. 345 (2009) 53 | DOI

[19] É Ghys, Déformations des structures complexes sur les espaces homogènes de SL(2,C), J. Reine Angew. Math. 468 (1995) 113 | DOI

[20] W M Goldman, Nonstandard Lorentz space forms, J. Differential Geom. 21 (1985) 301

[21] S Helgason, Differential geometry, Lie groups, and symmetric spaces, 80, Academic Press (1978)

[22] F Kassel, Proper actions on corank-one reductive homogeneous spaces, J. Lie Theory 18 (2008) 961

[23] F Kassel, Quotients compacts d’espaces homogènes réels ou p–adiques, PhD thesis, Université Paris-Sud (2009)

[24] F Kassel, Quotients compacts des groupes ultramétriques de rang un, Ann. Inst. Fourier (Grenoble) 60 (2010) 1741 | DOI

[25] F Kassel, T Kobayashi, Poincaré series for non-Riemannian locally symmetric spaces, Adv. Math. 287 (2016) 123 | DOI

[26] I Kim, Ergodic theory and rigidity on the symmetric space of non-compact type, Ergodic Theory Dynam. Systems 21 (2001) 93 | DOI

[27] M D Kirszbraun, Über die zusammenziehenden und Lipschitzschen Transformationen, Fund. Math. 22 (1934) 77

[28] B Klingler, Complétude des variétés lorentziennes à courbure constante, Math. Ann. 306 (1996) 353 | DOI

[29] T Kobayashi, Proper action on a homogeneous space of reductive type, Math. Ann. 285 (1989) 249 | DOI

[30] T Kobayashi, On discontinuous groups acting on homogeneous spaces with noncompact isotropy subgroups, J. Geom. Phys. 12 (1993) 133 | DOI

[31] T Kobayashi, Criterion for proper actions on homogeneous spaces of reductive groups, J. Lie Theory 6 (1996) 147

[32] T Kobayashi, Deformation of compact Clifford–Klein forms of indefinite-Riemannian homogeneous manifolds, Math. Ann. 310 (1998) 395 | DOI

[33] R S Kulkarni, F Raymond, 3–dimensional Lorentz space-forms and Seifert fiber spaces, J. Differential Geom. 21 (1985) 231

[34] S P Lalley, Renewal theorems in symbolic dynamics, with applications to geodesic flows, non-Euclidean tessellations and their fractal limits, Acta Math. 163 (1989) 1 | DOI

[35] U Lang, B Pavlović, V Schroeder, Extensions of Lipschitz maps into Hadamard spaces, Geom. Funct. Anal. 10 (2000) 1527 | DOI

[36] U Lang, V Schroeder, Kirszbraun’s theorem and metric spaces of bounded curvature, Geom. Funct. Anal. 7 (1997) 535 | DOI

[37] J R Lee, A Naor, Extending Lipschitz functions via random metric partitions, Invent. Math. 160 (2005) 59 | DOI

[38] A Marden, The geometry of finitely generated kleinian groups, Ann. of Math. 99 (1974) 383 | DOI

[39] C Mcmullen, Cusps are dense, Ann. of Math. 133 (1991) 217 | DOI

[40] C T Mcmullen, Hausdorff dimension and conformal dynamics, I : Strong convergence of Kleinian groups, J. Differential Geom. 51 (1999) 471

[41] A Papadopoulos, G Théret, Shortening all the simple closed geodesics on surfaces with boundary, Proc. Amer. Math. Soc. 138 (2010) 1775 | DOI

[42] A Parreau, Dégénérescences de sous-groupes discrets de groupes de Lie semisimples et actions de groupes sur des immeubles affines, PhD thesis, Université Paris-Sud 11 (2000)

[43] S J Patterson, The limit set of a Fuchsian group, Acta Math. 136 (1976) 241 | DOI

[44] T Roblin, Sur la fonction orbitale des groupes discrets en courbure négative, Ann. Inst. Fourier (Grenoble) 52 (2002) 145 | DOI

[45] T Roblin, Ergodicité et équidistribution en courbure négative, 95, Société Mathématique de France (2003)

[46] F Salein, Variétés anti-de Sitter de dimension 3 exotiques, Ann. Inst. Fourier (Grenoble) 50 (2000) 257 | DOI

[47] A Selberg, On discontinuous groups in higher-dimensional symmetric spaces, from: "Collected papers, I", Springer (1989) 475

[48] D Sullivan, The density at infinity of a discrete group of hyperbolic motions, Inst. Hautes Études Sci. Publ. Math. 50 (1979) 171 | DOI

[49] D Sullivan, Entropy, Hausdorff measures old and new, and limit sets of geometrically finite Kleinian groups, Acta Math. 153 (1984) 259 | DOI

[50] W P Thurston, The geometry and topology of three-manifolds, lecture notes (1979)

[51] W P Thurston, Minimal stretch maps between hyperbolic surfaces, preprint (1986)

[52] F A Valentine, Contractions in non-Euclidean spaces, Bull. Amer. Math. Soc. 50 (1944) 710 | DOI

[53] A Zeghib, On closed anti-de Sitter spacetimes, Math. Ann. 310 (1998) 695 | DOI

Cité par Sources :