Qualitative aspects of counting real rational curves on real K3 surfaces
Geometry & topology, Tome 21 (2017) no. 1, pp. 585-601.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We study qualitative aspects of the Welschinger-like –valued count of real rational curves on primitively polarized real K3 surfaces. In particular, we prove that, with respect to the degree of the polarization, at logarithmic scale, the rate of growth of the number of such real rational curves is, up to a constant factor, the rate of growth of the number of complex rational curves. We indicate a few instances when the lower bound for the number of real rational curves provided by our count is sharp. In addition, we exhibit various congruences between real and complex counts.

DOI : 10.2140/gt.2017.21.585
Classification : 14N99, 14P99, 14J28
Keywords: $K3$ surfaces, real rational curves, Yau–Zaslow formula, Welschinger invariants

Kharlamov, Viatcheslav 1 ; Răsdeaconu, Rareş 2

1 IRMA UMR 7501, Université de Strasbourg, 7 Rue René-Descartes, 67084 Strasbourg Cedex, France
2 Department of Mathematics, Vanderbilt University, 1326 Stevenson Center, Nashville, TN 37240, United States
@article{GT_2017_21_1_a11,
     author = {Kharlamov, Viatcheslav and R\u{a}sdeaconu, Rare\c{s}},
     title = {Qualitative aspects of counting real rational curves on real {K3} surfaces},
     journal = {Geometry & topology},
     pages = {585--601},
     publisher = {mathdoc},
     volume = {21},
     number = {1},
     year = {2017},
     doi = {10.2140/gt.2017.21.585},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2017.21.585/}
}
TY  - JOUR
AU  - Kharlamov, Viatcheslav
AU  - Răsdeaconu, Rareş
TI  - Qualitative aspects of counting real rational curves on real K3 surfaces
JO  - Geometry & topology
PY  - 2017
SP  - 585
EP  - 601
VL  - 21
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2017.21.585/
DO  - 10.2140/gt.2017.21.585
ID  - GT_2017_21_1_a11
ER  - 
%0 Journal Article
%A Kharlamov, Viatcheslav
%A Răsdeaconu, Rareş
%T Qualitative aspects of counting real rational curves on real K3 surfaces
%J Geometry & topology
%D 2017
%P 585-601
%V 21
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2017.21.585/
%R 10.2140/gt.2017.21.585
%F GT_2017_21_1_a11
Kharlamov, Viatcheslav; Răsdeaconu, Rareş. Qualitative aspects of counting real rational curves on real K3 surfaces. Geometry & topology, Tome 21 (2017) no. 1, pp. 585-601. doi : 10.2140/gt.2017.21.585. http://geodesic.mathdoc.fr/articles/10.2140/gt.2017.21.585/

[1] E Brugallé, G Mikhalkin, Enumeration of curves via floor diagrams, C. R. Math. Acad. Sci. Paris 345 (2007) 329 | DOI

[2] J Bryan, N C Leung, The enumerative geometry of K3 surfaces and modular forms, J. Amer. Math. Soc. 13 (2000) 371 | DOI

[3] X Chen, A simple proof that rational curves on K3 are nodal, Math. Ann. 324 (2002) 71 | DOI

[4] C Ciliberto, A Lopez, R Miranda, Projective degenerations of K3 surfaces, Gaussian maps, and Fano threefolds, Invent. Math. 114 (1993) 641 | DOI

[5] A I Degtyarev, V M Kharlamov, Topological properties of real algebraic varieties : Rokhlin’s way, Uspekhi Mat. Nauk 55 (2000) 129

[6] P Di Francesco, C Itzykson, Quantum intersection rings, from: "The moduli space of curves" (editors R Dijkgraaf, C Faber, G van der Geer), Progr. Math. 129, Birkhäuser (1995) 81 | DOI

[7] S Finashin, V Kharlamov, Abundance of real lines on real projective hypersurfaces, Int. Math. Res. Not. 2013 (2013) 3639 | DOI

[8] S Finashin, V Kharlamov, Abundance of 3–planes on real projective hypersurfaces, Arnold Math. J. 1 (2015) 171 | DOI

[9] D B Grünberg, P Moree, Sequences of enumerative geometry: congruences and asymptotics, Experiment. Math. 17 (2008) 409

[10] G H Hardy, S Ramanujan, Asymptotic formulae in combinatory analysis, Proc. London Math. Soc. (2) 17 (1918) 75 | DOI

[11] I Itenberg, V Kharlamov, E Shustin, Welschinger invariant and enumeration of real rational curves, Int. Math. Res. Not. 2003 (2003) 2639 | DOI

[12] I Itenberg, V Kharlamov, E Shustin, Logarithmic asymptotics of the genus zero Gromov–Witten invariants of the blown up plane, Geom. Topol. 9 (2005) 483 | DOI

[13] I Itenberg, V Kharlamov, E Shustin, Welschinger invariants of real del Pezzo surfaces of degree ≥ 2, Internat. J. Math. 26 (2015) | DOI

[14] V M Kharlamov, Additional congruences for the Euler characteristic of even-dimensional real algebraic varieties, Funkcional. Anal. i Priložen. 9 (1975) 51

[15] V Kharlamov, R Răsdeaconu, Counting real rational curves on K3 surfaces, Int. Math. Res. Not. 2015 (2015) 5436 | DOI

[16] G Köhler, Eta products and theta series identities, Springer (2011) | DOI

[17] V S Kulikov, Degenerations of K3 surfaces and Enriques surfaces, Izv. Akad. Nauk SSSR Ser. Mat. 41 (1977) 1008

[18] J Lehner, Further congruence properties of the Fourier coefficients of the modular invariant j(τ), Amer. J. Math. 71 (1949) 373 | DOI

[19] V V Nikulin, Integer symmetric bilinear forms and some of their geometric applications, Izv. Akad. Nauk SSSR Ser. Mat. 43 (1979) 111, 238

[20] V V Nikulin, S Saito, Real K3 surfaces with non-symplectic involution and applications, Proc. London Math. Soc. 90 (2005) 591 | DOI

[21] J V Uspensky, Asymptotic formulae for numerical functions which occur in the theory of partitions, Bull. Acad. Sci. URSS (6) 14 (1920) 199

[22] O Y Viro, Construction of multicomponent real algebraic surfaces, Dokl. Akad. Nauk SSSR 248 (1979) 279

[23] J Y Welschinger, Invariants of real rational symplectic 4–manifolds and lower bounds in real enumerative geometry, C. R. Math. Acad. Sci. Paris 336 (2003) 341 | DOI

[24] J Y Welschinger, Optimalité, congruences et calculs d’invariants des variétés symplectiques réelles de dimension quatre, preprint (2007)

[25] S T Yau, E Zaslow, BPS states, string duality, and nodal curves on K3, Nuclear Phys. B 471 (1996) 503 | DOI

Cité par Sources :