Anosov representations and proper actions
Geometry & topology, Tome 21 (2017) no. 1, pp. 485-584.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We establish several characterizations of Anosov representations of word hyperbolic groups into real reductive Lie groups, in terms of a Cartan projection or Lyapunov projection of the Lie group. Using a properness criterion of Benoist and Kobayashi, we derive applications to proper actions on homogeneous spaces of reductive groups.

DOI : 10.2140/gt.2017.21.485
Keywords: Anosov representations, properly discontinuous actions, discrete subgroups of Lie groups, representations of hyperbolic groups, boundary maps, Cartan projection

Guéritaud, François 1 ; Guichard, Olivier 2 ; Kassel, Fanny 3 ; Wienhard, Anna 4

1 CNRS and Laboratoire Paul Painlevé, Université Lille 1, 59655 Villeneuve d’Ascq Cedex, France
2 IRMA, Université de Strasbourg, 7 rue Descartes, 67000 Strasbourg, France
3 CNRS and Laboratoire Alexander Grothendieck, Institut des Hautes Études Scientifiques, 35 route de Chartres, 91440 Bures-sur-Yvette, France
4 Mathematisches Institut, Ruprecht-Karls Universität Heidelberg, Im Neuenheimer Feld 288, D-69120 Heidelberg, Germany
@article{GT_2017_21_1_a10,
     author = {Gu\'eritaud, Fran\c{c}ois and Guichard, Olivier and Kassel, Fanny and Wienhard, Anna},
     title = {Anosov representations and proper actions},
     journal = {Geometry & topology},
     pages = {485--584},
     publisher = {mathdoc},
     volume = {21},
     number = {1},
     year = {2017},
     doi = {10.2140/gt.2017.21.485},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2017.21.485/}
}
TY  - JOUR
AU  - Guéritaud, François
AU  - Guichard, Olivier
AU  - Kassel, Fanny
AU  - Wienhard, Anna
TI  - Anosov representations and proper actions
JO  - Geometry & topology
PY  - 2017
SP  - 485
EP  - 584
VL  - 21
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2017.21.485/
DO  - 10.2140/gt.2017.21.485
ID  - GT_2017_21_1_a10
ER  - 
%0 Journal Article
%A Guéritaud, François
%A Guichard, Olivier
%A Kassel, Fanny
%A Wienhard, Anna
%T Anosov representations and proper actions
%J Geometry & topology
%D 2017
%P 485-584
%V 21
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2017.21.485/
%R 10.2140/gt.2017.21.485
%F GT_2017_21_1_a10
Guéritaud, François; Guichard, Olivier; Kassel, Fanny; Wienhard, Anna. Anosov representations and proper actions. Geometry & topology, Tome 21 (2017) no. 1, pp. 485-584. doi : 10.2140/gt.2017.21.485. http://geodesic.mathdoc.fr/articles/10.2140/gt.2017.21.485/

[1] H Abels, G A Margulis, G A Soĭfer, Semigroups containing proximal linear maps, Israel J. Math. 91 (1995) 1 | DOI

[2] T Barbot, Deformations of Fuchsian AdS representations are quasi-Fuchsian, J. Differential Geom. 101 (2015) 1

[3] T Barbot, Q Mérigot, Anosov AdS representations are quasi-Fuchsian, Groups Geom. Dyn. 6 (2012) 441 | DOI

[4] Y Benoist, Actions propres sur les espaces homogènes réductifs, Ann. of Math. 144 (1996) 315 | DOI

[5] Y Benoist, Propriétés asymptotiques des groupes linéaires, Geom. Funct. Anal. 7 (1997) 1 | DOI

[6] Y Benoist, Automorphismes des cônes convexes, Invent. Math. 141 (2000) 149 | DOI

[7] Y Benoist, Convexes divisibles, I, from: "Algebraic groups and arithmetic" (editors S G Dani, G Prasad), Tata Inst. Fund. Res. (2004) 339

[8] Y Benoist, F Labourie, Sur les difféomorphismes d’Anosov affines à feuilletages stable et instable différentiables, Invent. Math. 111 (1993) 285 | DOI

[9] M Bochénski, P Jastrzębski, T Okuda, A Tralle, Proper SL(2, R)–actions on homogeneous spaces, preprint (2014)

[10] A Borel, J Tits, Groupes réductifs, Inst. Hautes Études Sci. Publ. Math. 27 (1965) 55

[11] N Bourbaki, Éléments de mathématique, XXXIV : Groupes et algèbres de Lie Chapitres 4–6, 1337, Hermann (1968) | DOI

[12] N Bourbaki, Éléments de mathématique, XXXVIII : Groupes et algèbres de Lie Chapitres 7–8, 1364, Hermann (1975) 271 | DOI

[13] M Bourdon, Structure conforme au bord et flot géodésique d’un CAT(−1)–espace, Enseign. Math. 41 (1995) 63

[14] B H Bowditch, Geometrical finiteness with variable negative curvature, Duke Math. J. 77 (1995) 229 | DOI

[15] B H Bowditch, A topological characterisation of hyperbolic groups, J. Amer. Math. Soc. 11 (1998) 643 | DOI

[16] M Bridgeman, R Canary, F Labourie, A Sambarino, The pressure metric for Anosov representations, Geom. Funct. Anal. 25 (2015) 1089 | DOI

[17] M R Bridson, A Haefliger, Metric spaces of non-positive curvature, 319, Springer (1999) | DOI

[18] M Burger, A Iozzi, F Labourie, A Wienhard, Maximal representations of surface groups : symplectic Anosov structures, Pure Appl. Math. Q. 1 (2005) 543 | DOI

[19] M Burger, A Iozzi, A Wienhard, Maximal representations and Anosov structures, in preparation

[20] C Champetier, Petite simplification dans les groupes hyperboliques, Ann. Fac. Sci. Toulouse Math. 3 (1994) 161 | DOI

[21] M Coornaert, T Delzant, A Papadopoulos, Géométrie et théorie des groupes : les groupes hyperboliques de Gromov, 1441, Springer (1990) | DOI

[22] J Danciger, F Guéritaud, F Kassel, Margulis spacetimes via the arc complex, Invent. Math. 204 (2016) 133 | DOI

[23] B Deroin, N Tholozan, Dominating surface group representations by Fuchsian ones, Int. Math. Res. Not. 2016 (2016) 4145 | DOI

[24] P B Eberlein, Geometry of nonpositively curved manifolds, University of Chicago Press (1996)

[25] W J Floyd, Group completions and limit sets of Kleinian groups, Invent. Math. 57 (1980) 205 | DOI

[26] V Fock, A Goncharov, Moduli spaces of local systems and higher Teichmüller theory, Publ. Math. Inst. Hautes Études Sci. 103 (2006) 1 | DOI

[27] É Ghys, Déformations des structures complexes sur les espaces homogènes de SL(2, C), J. Reine Angew. Math. 468 (1995) 113 | DOI

[28] W M Goldman, Nonstandard Lorentz space forms, J. Differential Geom. 21 (1985) 301

[29] W M Goldman, F Labourie, G A Margulis, Y N Minsky, Complete flat Lorentz 3–manifolds and laminations on hyperbolic surfaces, in preparation

[30] I Y Gol’Dsheĭd, G A Margulis, Lyapunov exponents of a product of random matrices, Uspekhi Mat. Nauk 44 (1989) 13

[31] R Goodman, N R Wallach, Symmetry, representations, and invariants, 255, Springer (2009) | DOI

[32] M Gromov, Hyperbolic groups, from: "Essays in group theory" (editor S M Gersten), Math. Sci. Res. Inst. Publ. 8, Springer (1987) 75 | DOI

[33] F Guéritaud, O Guichard, F Kassel, A Wienhard, Compactification of certain Clifford–Klein forms of reductive homogeneous spaces, preprint (2015)

[34] F Guéritaud, F Kassel, Maximally stretched laminations on geometrically finite hyperbolic manifolds, preprint (2013)

[35] F Guéritaud, F Kassel, M Wolff, Compact anti-de Sitter 3–manifolds and folded hyperbolic structures on surfaces, Pacific J. Math. 275 (2015) 325 | DOI

[36] O Guichard, Déformation de sous-groupes discrets de groupes de rang un, PhD thesis, Université Paris 7 (2004)

[37] O Guichard, A Wienhard, Anosov representations: domains of discontinuity and applications, Invent. Math. 190 (2012) 357 | DOI

[38] Y Guivarc’H, Produits de matrices aléatoires et applications aux propriétés géométriques des sous-groupes du groupe linéaire, Ergodic Theory Dynam. Systems 10 (1990) 483 | DOI

[39] Y Guivarc’H, A Raugi, Propriétés de contraction d’un semi-groupe de matrices inversibles : coefficients de Liapunoff d’un produit de matrices aléatoires indépendantes, Israel J. Math. 65 (1989) 165 | DOI

[40] S Helgason, Differential geometry, Lie groups, and symmetric spaces, 80, Academic Press (1978)

[41] S Helgason, Groups and geometric analysis: integral geometry, invariant differential operators, and spherical functions, 113, Academic Press (1984)

[42] M Kapovich, B Leeb, J Porti, Morse actions of discrete groups on symmetric space, preprint (2014)

[43] M Kapovich, B Leeb, J Porti, A Morse lemma for quasigeodesics in symmetric spaces and euclidean buildings, preprint (2014)

[44] M Kapovich, B Leeb, J Porti, Dynamics on flag manifolds: domains of proper discontinuity and cocompactness, preprint (2015)

[45] M Kapovich, B Leeb, J Porti, Some recent results on Anosov representations, Transform. Groups 21 (2016) 1105 | DOI

[46] F I Karpelevič, Surfaces of transitivity of a semisimple subgroup of the group of motions of a symmetric space, Doklady Akad. Nauk SSSR 93 (1953) 401

[47] F Kassel, Proper actions on corank-one reductive homogeneous spaces, J. Lie Theory 18 (2008) 961

[48] F Kassel, Quotients compacts d’espaces homogènes réels ou p–adiques, PhD thesis, Université Paris-Sud (2009)

[49] F Kassel, Quotients compacts des groupes ultramétriques de rang un, Ann. Inst. Fourier (Grenoble) 60 (2010) 1741 | DOI

[50] F Kassel, Deformation of proper actions on reductive homogeneous spaces, Math. Ann. 353 (2012) 599 | DOI

[51] F Kassel, T Kobayashi, Poincaré series for non-Riemannian locally symmetric spaces, Adv. Math. 287 (2016) 123 | DOI

[52] A W Knapp, Lie groups beyond an introduction, 140, Birkhäuser (2002)

[53] T Kobayashi, Proper action on a homogeneous space of reductive type, Math. Ann. 285 (1989) 249 | DOI

[54] T Kobayashi, Criterion for proper actions on homogeneous spaces of reductive groups, J. Lie Theory 6 (1996) 147

[55] T Kobayashi, Deformation of compact Clifford–Klein forms of indefinite-Riemannian homogeneous manifolds, Math. Ann. 310 (1998) 395 | DOI

[56] T Kobayashi, T Yoshino, Compact Clifford–Klein forms of symmetric spaces, revisited, Pure Appl. Math. Q. 1 (2005) 591 | DOI

[57] B Kostant, The principal three-dimensional subgroup and the Betti numbers of a complex simple Lie group, Amer. J. Math. 81 (1959) 973 | DOI

[58] F Labourie, Anosov flows, surface groups and curves in projective space, Invent. Math. 165 (2006) 51 | DOI

[59] I Mineyev, Flows and joins of metric spaces, Geom. Topol. 9 (2005) 403 | DOI

[60] I Mineyev, G Yu, The Baum–Connes conjecture for hyperbolic groups, Invent. Math. 149 (2002) 97 | DOI

[61] Y N Minsky, On dynamics of Out(Fn) on PSL2(C) characters, Israel J. Math. 193 (2013) 47 | DOI

[62] G D Mostow, Some new decomposition theorems for semi-simple groups, from: "Lie algebras and Lie groups" (editor A M Gleason), Mem. Amer. Math. Soc. 14, Amer. Math. Soc. (1955) 31 | DOI

[63] T Okuda, Classification of semisimple symmetric spaces with proper SL(2, R)–actions, J. Differential Geom. 94 (2013) 301

[64] J Petrillo, Goursat’s other theorem, College Math. J. 40 (2009) 119

[65] G Prasad, R–regular elements in Zariski-dense subgroups, Quart. J. Math. Oxford Ser. 45 (1994) 541 | DOI

[66] F Salein, Variétés anti-de Sitter de dimension 3 exotiques, Ann. Inst. Fourier (Grenoble) 50 (2000) 257 | DOI

[67] N Tholozan, Dominating surface group representations and deforming closed anti-de Sitter 3–manifolds, preprint (2014)

[68] N Tholozan, Sur la complétude de certaines variétés pseudo-riemanniennes localement symétriques, Ann. Inst. Fourier (Grenoble) 65 (2015) 1921 | DOI

Cité par Sources :