Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We compute the total power operation for the Morava –theory of any finite group up to torsion. Our formula is stated in terms of the –action on the Drinfel’d ring of full level structures on the formal group associated to –theory. It can be specialized to give explicit descriptions of many classical operations. Moreover, we show that the character map of Hopkins, Kuhn and Ravenel from –theory to –invariant generalized class functions is a natural transformation of global power functors on finite groups.
Barthel, Tobias 1 ; Stapleton, Nathaniel 2
@article{GT_2017_21_1_a8, author = {Barthel, Tobias and Stapleton, Nathaniel}, title = {The character of the total power operation}, journal = {Geometry & topology}, pages = {385--440}, publisher = {mathdoc}, volume = {21}, number = {1}, year = {2017}, doi = {10.2140/gt.2017.21.385}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2017.21.385/} }
TY - JOUR AU - Barthel, Tobias AU - Stapleton, Nathaniel TI - The character of the total power operation JO - Geometry & topology PY - 2017 SP - 385 EP - 440 VL - 21 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2017.21.385/ DO - 10.2140/gt.2017.21.385 ID - GT_2017_21_1_a8 ER -
Barthel, Tobias; Stapleton, Nathaniel. The character of the total power operation. Geometry & topology, Tome 21 (2017) no. 1, pp. 385-440. doi : 10.2140/gt.2017.21.385. http://geodesic.mathdoc.fr/articles/10.2140/gt.2017.21.385/
[1] Maps between classifying spaces, II, Invent. Math. 49 (1978) 1 | DOI
,[2] K–theory and the Hopf invariant, Quart. J. Math. Oxford Ser. 17 (1966) 31 | DOI
, ,[3] Isogenies of formal group laws and power operations in the cohomology theories En, Duke Math. J. 79 (1995) 423 | DOI
,[4] The sigma orientation is an H∞ map, Amer. J. Math. 126 (2004) 247 | DOI
, , ,[5] Centralizers in good groups are good, Algebr. Geom. Topol. 16 (2016) 1453 | DOI
, ,[6] H∞ ring spectra and their applications, 1176, Springer (1986) | DOI
, , , ,[7] Nonabelian Lubin–Tate theory, from: "Automorphic forms, Shimura varieties, and L–functions, II" (editors L Clozel, J S Milne), Perspect. Math. 11, Academic Press (1990) 15
,[8] Homotopy fixed point spectra for closed subgroups of the Morava stabilizer groups, Topology 43 (2004) 1 | DOI
, ,[9] Elliptic modules, Mat. Sb. 94(136) (1974) 594
,[10] Global Mackey functors with operations and n–special lambda rings, preprint (2013)
,[11] Moduli spaces of commutative ring spectra, from: "Structured ring spectra" (editors A Baker, B Richter), London Math. Soc. Lecture Note Ser. 315, Cambridge Univ. Press (2004) 151 | DOI
, ,[12] Generalized group characters and complex oriented cohomology theories, J. Amer. Math. Soc. 13 (2000) 553 | DOI
, , ,[13] Formal moduli for one-parameter formal Lie groups, Bull. Soc. Math. France 94 (1966) 49
, ,[14] On the Morava E–theory of wreath products of symmetric groups, in preparation
,[15] Notes on the Hopkins–Miller theorem, from: "Homotopy theory via algebraic geometry and group representations" (editors M Mahowald, S Priddy), Contemp. Math. 220, Amer. Math. Soc. (1998) 313 | DOI
,[16] The units of a ring spectrum and a logarithmic cohomology operation, J. Amer. Math. Soc. 19 (2006) 969 | DOI
,[17] Power operations for Morava E-theory of height 2 at the prime 2, preprint (2008)
,[18] Power operations in Morava E–theory : structure and calculations, preprint (2013)
,[19] Galois extensions of structured ring spectra: stably dualizable groups, 898, Amer. Math. Soc. (2008) | DOI
,[20] A transchromatic proof of Strickland’s theorem, Adv. Math. 285 (2015) 1415 | DOI
, ,[21] Morava K–theory of groups of order 32, Algebr. Geom. Topol. 11 (2011) 503 | DOI
,[22] An introduction to HKR character theory, preprint (2013)
,[23] Transchromatic generalized character maps, Algebr. Geom. Topol. 13 (2013) 171 | DOI
,[24] Finite subgroups of formal groups, J. Pure Appl. Algebra 121 (1997) 161 | DOI
,[25] Morava E–theory of symmetric groups, Topology 37 (1998) 757 | DOI
,[26] Representations of finite classical groups: a Hopf algebra approach, 869, Springer (1981) | DOI
,[27] The power operation structure on Morava E–theory of height 2 at the prime 3, Algebr. Geom. Topol. 14 (2014) 953 | DOI
,Cité par Sources :