The character of the total power operation
Geometry & topology, Tome 21 (2017) no. 1, pp. 385-440.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We compute the total power operation for the Morava E–theory of any finite group up to torsion. Our formula is stated in terms of the GLn(p)–action on the Drinfel’d ring of full level structures on the formal group associated to E–theory. It can be specialized to give explicit descriptions of many classical operations. Moreover, we show that the character map of Hopkins, Kuhn and Ravenel from E–theory to GLn(p)–invariant generalized class functions is a natural transformation of global power functors on finite groups.

DOI : 10.2140/gt.2017.21.385
Classification : 55N22, 55S25, 55P42
Keywords: power operations, generalized character theory, Morava $E$–theory

Barthel, Tobias 1 ; Stapleton, Nathaniel 2

1 Department of Mathematical Sciences, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen, Denmark
2 Fakultät für Mathematik, Universität Regensburg, D-93040 Regensburg, Germany
@article{GT_2017_21_1_a8,
     author = {Barthel, Tobias and Stapleton, Nathaniel},
     title = {The character of the total power operation},
     journal = {Geometry & topology},
     pages = {385--440},
     publisher = {mathdoc},
     volume = {21},
     number = {1},
     year = {2017},
     doi = {10.2140/gt.2017.21.385},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2017.21.385/}
}
TY  - JOUR
AU  - Barthel, Tobias
AU  - Stapleton, Nathaniel
TI  - The character of the total power operation
JO  - Geometry & topology
PY  - 2017
SP  - 385
EP  - 440
VL  - 21
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2017.21.385/
DO  - 10.2140/gt.2017.21.385
ID  - GT_2017_21_1_a8
ER  - 
%0 Journal Article
%A Barthel, Tobias
%A Stapleton, Nathaniel
%T The character of the total power operation
%J Geometry & topology
%D 2017
%P 385-440
%V 21
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2017.21.385/
%R 10.2140/gt.2017.21.385
%F GT_2017_21_1_a8
Barthel, Tobias; Stapleton, Nathaniel. The character of the total power operation. Geometry & topology, Tome 21 (2017) no. 1, pp. 385-440. doi : 10.2140/gt.2017.21.385. http://geodesic.mathdoc.fr/articles/10.2140/gt.2017.21.385/

[1] J F Adams, Maps between classifying spaces, II, Invent. Math. 49 (1978) 1 | DOI

[2] J F Adams, M F Atiyah, K–theory and the Hopf invariant, Quart. J. Math. Oxford Ser. 17 (1966) 31 | DOI

[3] M Ando, Isogenies of formal group laws and power operations in the cohomology theories En, Duke Math. J. 79 (1995) 423 | DOI

[4] M Ando, M J Hopkins, N P Strickland, The sigma orientation is an H∞ map, Amer. J. Math. 126 (2004) 247 | DOI

[5] T Barthel, N Stapleton, Centralizers in good groups are good, Algebr. Geom. Topol. 16 (2016) 1453 | DOI

[6] R R Bruner, J P May, J E Mcclure, M Steinberger, H∞ ring spectra and their applications, 1176, Springer (1986) | DOI

[7] H Carayol, Nonabelian Lubin–Tate theory, from: "Automorphic forms, Shimura varieties, and L–functions, II" (editors L Clozel, J S Milne), Perspect. Math. 11, Academic Press (1990) 15

[8] E S Devinatz, M J Hopkins, Homotopy fixed point spectra for closed subgroups of the Morava stabilizer groups, Topology 43 (2004) 1 | DOI

[9] V G Drinfel’D, Elliptic modules, Mat. Sb. 94(136) (1974) 594

[10] N Ganter, Global Mackey functors with operations and n–special lambda rings, preprint (2013)

[11] P G Goerss, M J Hopkins, Moduli spaces of commutative ring spectra, from: "Structured ring spectra" (editors A Baker, B Richter), London Math. Soc. Lecture Note Ser. 315, Cambridge Univ. Press (2004) 151 | DOI

[12] M J Hopkins, N J Kuhn, D C Ravenel, Generalized group characters and complex oriented cohomology theories, J. Amer. Math. Soc. 13 (2000) 553 | DOI

[13] J Lubin, J Tate, Formal moduli for one-parameter formal Lie groups, Bull. Soc. Math. France 94 (1966) 49

[14] P Nelson, On the Morava E–theory of wreath products of symmetric groups, in preparation

[15] C Rezk, Notes on the Hopkins–Miller theorem, from: "Homotopy theory via algebraic geometry and group representations" (editors M Mahowald, S Priddy), Contemp. Math. 220, Amer. Math. Soc. (1998) 313 | DOI

[16] C Rezk, The units of a ring spectrum and a logarithmic cohomology operation, J. Amer. Math. Soc. 19 (2006) 969 | DOI

[17] C Rezk, Power operations for Morava E-theory of height 2 at the prime 2, preprint (2008)

[18] C Rezk, Power operations in Morava E–theory : structure and calculations, preprint (2013)

[19] J Rognes, Galois extensions of structured ring spectra: stably dualizable groups, 898, Amer. Math. Soc. (2008) | DOI

[20] T M Schlank, N Stapleton, A transchromatic proof of Strickland’s theorem, Adv. Math. 285 (2015) 1415 | DOI

[21] B Schuster, Morava K–theory of groups of order 32, Algebr. Geom. Topol. 11 (2011) 503 | DOI

[22] N Stapleton, An introduction to HKR character theory, preprint (2013)

[23] N Stapleton, Transchromatic generalized character maps, Algebr. Geom. Topol. 13 (2013) 171 | DOI

[24] N P Strickland, Finite subgroups of formal groups, J. Pure Appl. Algebra 121 (1997) 161 | DOI

[25] N P Strickland, Morava E–theory of symmetric groups, Topology 37 (1998) 757 | DOI

[26] A V Zelevinsky, Representations of finite classical groups: a Hopf algebra approach, 869, Springer (1981) | DOI

[27] Y Zhu, The power operation structure on Morava E–theory of height 2 at the prime 3, Algebr. Geom. Topol. 14 (2014) 953 | DOI

Cité par Sources :