Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We show that for each , the –metric on the group of area-preserving diffeomorphisms of the two-sphere has infinite diameter. This solves the last open case of a conjecture of Shnirelman from 1985. Our methods extend to yield stronger results on the large-scale geometry of the corresponding metric space, completing an answer to a question of Kapovich from 2012. Our proof uses configuration spaces of points on the two-sphere, quasimorphisms, optimally chosen braid diagrams, and, as a key element, the cross-ratio map from the configuration space of points on to the moduli space of complex rational curves with marked points.
Brandenbursky, Michael 1 ; Shelukhin, Egor 2
@article{GT_2017_21_6_a11, author = {Brandenbursky, Michael and Shelukhin, Egor}, title = {The {Lp{\textendash}diameter} of the group of area-preserving diffeomorphisms of {S2}}, journal = {Geometry & topology}, pages = {3785--3810}, publisher = {mathdoc}, volume = {21}, number = {6}, year = {2017}, doi = {10.2140/gt.2017.21.3785}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2017.21.3785/} }
TY - JOUR AU - Brandenbursky, Michael AU - Shelukhin, Egor TI - The Lp–diameter of the group of area-preserving diffeomorphisms of S2 JO - Geometry & topology PY - 2017 SP - 3785 EP - 3810 VL - 21 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2017.21.3785/ DO - 10.2140/gt.2017.21.3785 ID - GT_2017_21_6_a11 ER -
%0 Journal Article %A Brandenbursky, Michael %A Shelukhin, Egor %T The Lp–diameter of the group of area-preserving diffeomorphisms of S2 %J Geometry & topology %D 2017 %P 3785-3810 %V 21 %N 6 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.2140/gt.2017.21.3785/ %R 10.2140/gt.2017.21.3785 %F GT_2017_21_6_a11
Brandenbursky, Michael; Shelukhin, Egor. The Lp–diameter of the group of area-preserving diffeomorphisms of S2. Geometry & topology, Tome 21 (2017) no. 6, pp. 3785-3810. doi : 10.2140/gt.2017.21.3785. http://geodesic.mathdoc.fr/articles/10.2140/gt.2017.21.3785/
[1] Sur la géométrie différentielle des groupes de Lie de dimension infinie et ses applications à l’hydrodynamique des fluides parfaits, Ann. Inst. Fourier Grenoble 16 (1966) 319
,[2] The cohomology ring of the colored braid group, Mat. Zametki 5 (1969) 227
,[3] Topological methods in hydrodynamics, 125, Springer (1998) | DOI
, ,[4] The structure of classical diffeomorphism groups, 400, Kluwer (1997) | DOI
,[5] Metric properties of the group of area preserving diffeomorphisms, Trans. Amer. Math. Soc. 353 (2001) 4661 | DOI
, ,[6] Bounded cohomology of subgroups of mapping class groups, Geom. Topol. 6 (2002) 69 | DOI
, ,[7] On braid groups, Comm. Pure Appl. Math. 22 (1969) 41 | DOI
,[8] On quasi-morphisms from knot and braid invariants, J. Knot Theory Ramifications 20 (2011) 1397 | DOI
,[9] Quasi-morphisms and Lp–metrics on groups of volume-preserving diffeomorphisms, J. Topol. Anal. 4 (2012) 255 | DOI
,[10] On the autonomous metric on the group of area-preserving diffeomorphisms of the 2–disc, Algebr. Geom. Topol. 13 (2013) 795 | DOI
, ,[11] Quasi-isometric embeddings into diffeomorphism groups, Groups Geom. Dyn. 7 (2013) 523 | DOI
, ,[12] On the large-scale geometry of the Lp–metric on the symplectomorphism group of the two-sphere, preprint (2015)
, ,[13] On the Lp–geometry of autonomous Hamiltonian diffeomorphisms of surfaces, Math. Res. Lett. 22 (2015) 1275 | DOI
, ,[14] On the group of automorphisms of a symplectic manifold, from: "Problems in analysis" (editor R C Gunning), Princeton Univ. Press (1970) 1
,[15] scl, 20, Math. Soc. Japan (2009) | DOI
,[16] Quasi-isometrically embedded subgroups of braid and diffeomorphism groups, Trans. Amer. Math. Soc. 359 (2007) 5485 | DOI
, ,[17] Geodesics on the symplectomorphism group, Geom. Funct. Anal. 22 (2012) 202 | DOI
,[18] Groups of diffeomorphisms and the motion of an incompressible fluid, Ann. of Math. 92 (1970) 102 | DOI
, ,[19] Singularities of the exponential map on the volume-preserving diffeomorphism group, Geom. Funct. Anal. 16 (2006) 850 | DOI
, , ,[20] The diameter of the symplectomorphism group is infinite, Invent. Math. 103 (1991) 327 | DOI
, ,[21] Transformations et homéomorphismes préservant la mesure : systémes dynamiques minimaux, PhD thesis, Université Paris-Sud, Orsay (1980)
,[22] Enlacements asymptotiques, Topology 36 (1997) 1355 | DOI
, ,[23] Commutators and diffeomorphisms of surfaces, Ergodic Theory Dynam. Systems 24 (2004) 1591 | DOI
, ,[24] Topological lower bounds on the distance between area preserving diffeomorphisms, Bol. Soc. Brasil. Mat. 31 (2000) 9 | DOI
, ,[25] Topics in geometric group theory, Univ. of Chicago Press (2000)
,[26] Quasi-morphisms on the group of area-preserving diffeomorphisms of the 2–disk via braid groups, Proc. Amer. Math. Soc. Ser. B 1 (2014) 43 | DOI
,[27] RAAGs in Ham, Geom. Funct. Anal. 22 (2012) 733 | DOI
,[28] Braid groups, 247, Springer (2008) | DOI
, ,[29] The geometry of infinite-dimensional groups, 51, Springer (2009) | DOI
, ,[30] Anti-trees and right-angled Artin subgroups of braid groups, Geom. Topol. 19 (2015) 3289 | DOI
, ,[31] Introductory real analysis, Dover (1975)
, ,[32] Geometric integration theory, Birkhäuser (2008) | DOI
, ,[33] Introduction to symplectic topology, Oxford Univ. Press (1998)
, ,[34] Hofer’s diameter and Lagrangian intersections, Int. Math. Res. Not. 1998 (1998) 217 | DOI
,[35] The geometry of the group of symplectic diffeomorphisms, Birkhäuser (2001) | DOI
,[36] Floer homology, dynamics and groups, from: "Morse theoretic methods in nonlinear analysis and in symplectic topology" (editors P Biran, O Cornea, F Lalonde), NATO Sci. Ser. II Math. Phys. Chem. 217, Springer (2006) 417 | DOI
,[37] Quasi-morphismes de Calabi et graphe de Reeb sur le tore, C. R. Math. Acad. Sci. Paris 343 (2006) 323 | DOI
,[38] Quasi-morphismes et invariant de Calabi, Ann. Sci. École Norm. Sup. 39 (2006) 177 | DOI
,[39] “Enlacements asymptotiques” revisited, Ann. Math. Qué. 39 (2015) 205 | DOI
,[40] The geometry of the group of diffeomorphisms and the dynamics of an ideal incompressible fluid, Mat. Sb. 128(170) (1985) 82, 144
,[41] Generalized fluid flows, their approximation and applications, Geom. Funct. Anal. 4 (1994) 586 | DOI
,[42] Microglobal analysis of the Euler equations, J. Math. Fluid Mech. 7 (2005) | DOI
,[43] Diffeomorphisms of the 2–sphere, Proc. Amer. Math. Soc. 10 (1959) 621 | DOI
,Cité par Sources :