Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
In 1976 Thurston associated to a –manifold a marked polytope in , which measures the minimal complexity of surfaces representing homology classes and determines all fibered classes in . Recently the first and third authors associated to a presentation with two generators and one relator a marked polytope in and showed that it determines the Bieri–Neumann–Strebel invariant of . We show that if the fundamental group of a –manifold admits such a presentation , then the corresponding marked polytopes in agree.
Friedl, Stefan 1 ; Schreve, Kevin 2 ; Tillmann, Stephan 3
@article{GT_2017_21_6_a10, author = {Friedl, Stefan and Schreve, Kevin and Tillmann, Stephan}, title = {Thurston norm via {Fox} calculus}, journal = {Geometry & topology}, pages = {3759--3784}, publisher = {mathdoc}, volume = {21}, number = {6}, year = {2017}, doi = {10.2140/gt.2017.21.3759}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2017.21.3759/} }
TY - JOUR AU - Friedl, Stefan AU - Schreve, Kevin AU - Tillmann, Stephan TI - Thurston norm via Fox calculus JO - Geometry & topology PY - 2017 SP - 3759 EP - 3784 VL - 21 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2017.21.3759/ DO - 10.2140/gt.2017.21.3759 ID - GT_2017_21_6_a10 ER -
Friedl, Stefan; Schreve, Kevin; Tillmann, Stephan. Thurston norm via Fox calculus. Geometry & topology, Tome 21 (2017) no. 6, pp. 3759-3784. doi : 10.2140/gt.2017.21.3759. http://geodesic.mathdoc.fr/articles/10.2140/gt.2017.21.3759/
[1] Criteria for virtual fibering, J. Topol. 1 (2008) 269 | DOI
,[2] The virtual Haken conjecture, Doc. Math. 18 (2013) 1045
,[3] 3–manifold groups, Eur. Math. Soc. (2015) | DOI
, , ,[4] A geometric invariant of discrete groups, Invent. Math. 90 (1987) 451 | DOI
, , ,[5] The structure of 3–manifolds with two-generated fundamental group, Topology 44 (2005) 283 | DOI
, ,[6] Heegaard genus of closed orientable Seifert 3–manifolds, Invent. Math. 76 (1984) 455 | DOI
, ,[7] Topological and geometric properties of graph manifolds, Algebra i Analiz 16 (2004) 3
, ,[8] Noncommutative knot theory, Algebr. Geom. Topol. 4 (2004) 347 | DOI
,[9] Knot concordance, Whitney towers and L2–signatures, Ann. of Math. 157 (2003) 433 | DOI
, , ,[10] The Thurston norm via normal surfaces, Pacific J. Math. 239 (2009) 1 | DOI
, ,[11] Approximating L2–invariants and the Atiyah conjecture, Comm. Pure Appl. Math. 56 (2003) 839 | DOI
, , , , ,[12] Alexander and Thurston norms of fibered 3–manifolds, Pacific J. Math. 200 (2001) 43 | DOI
,[13] Increasing the number of fibered faces of arithmetic hyperbolic 3–manifolds, Amer. J. Math. 132 (2010) 53 | DOI
, ,[14] A random tunnel number one 3–manifold does not fiber over the circle, Geom. Topol. 10 (2006) 2431 | DOI
, ,[15] Finite covers of random 3–manifolds, Invent. Math. 166 (2006) 457 | DOI
, ,[16] Finite presentations of groups and 3–manifolds, Quart. J. Math. Oxford Ser. 12 (1961) 205 | DOI
,[17] Free differential calculus, I : Derivation in the free group ring, Ann. of Math. 57 (1953) 547 | DOI
,[18] Reidemeister torsion, the Thurston norm and Harvey’s invariants, Pacific J. Math. 230 (2007) 271 | DOI
,[19] The Thurston norm, fibered manifolds and twisted Alexander polynomials, Topology 45 (2006) 929 | DOI
, ,[20] Twisted Alexander norms give lower bounds on the Thurston norm, Trans. Amer. Math. Soc. 360 (2008) 4597 | DOI
, ,[21] Poincaré duality and degrees of twisted Alexander polynomials, Indiana Univ. Math. J. 61 (2012) 147 | DOI
, , ,[22] The virtual fibering theorem for 3–manifolds, Enseign. Math. 60 (2014) 79 | DOI
, ,[23] Twisted Reidemeister torsion and the Thurston norm : graph manifolds and finite representations, Illinois J. Math. 59 (2015) 691
, ,[24] Two-generator one-relator groups and marked polytopes, preprint (2015)
, ,[25] A survey of twisted Alexander polynomials, from: "The mathematics of knots: theory and application" (editors M Banagl, D Vogel), Contrib. Math. Comput. Sci. 1, Springer (2011) 45 | DOI
, ,[26] The Thurston norm and twisted Alexander polynomials, J. Reine Angew. Math. 707 (2015) 87 | DOI
, ,[27] Higher-order polynomial invariants of 3–manifolds giving lower bounds for the Thurston norm, Topology 44 (2005) 895 | DOI
,[28] Non-commutative multivariable Reidemester torsion and the Thurston norm, Algebr. Geom. Topol. 7 (2007) 755 | DOI
, ,[29] Residual finiteness for 3–manifolds, from: "Combinatorial group theory and topology" (editors S M Gersten, J R Stallings), Ann. of Math. Stud. 111, Princeton Univ. Press (1987) 379
,[30] On reciprocality of twisted Alexander invariants, Algebr. Geom. Topol. 10 (2010) 1017 | DOI
, , ,[31] Bridge number and the curve complex, preprint (2006)
,[32] Twisted Alexander polynomial and Reidemeister torsion, Pacific J. Math. 174 (1996) 431 | DOI
,[33] Applications of a new K–theoretic theorem to soluble group rings, Proc. Amer. Math. Soc. 104 (1988) 675 | DOI
, , ,[34] Rank and genus of 3–manifolds, J. Amer. Math. Soc. 26 (2013) 777 | DOI
,[35] Finite group extensions and the Atiyah conjecture, J. Amer. Math. Soc. 20 (2007) 1003 | DOI
, ,[36] Virtual cubulation of nonpositively curved graph manifolds, J. Topol. 6 (2013) 793 | DOI
,[37] Whitehead torsion, Bull. Amer. Math. Soc. 72 (1966) 358 | DOI
,[38] On composite tunnel number one links, Topology Appl. 59 (1994) 59 | DOI
,[39] On unknotting tunnels for knots, Math. Ann. 289 (1991) 143 | DOI
, ,[40] Every two-generator knot is prime, Proc. Amer. Math. Soc. 86 (1982) 143 | DOI
,[41] The algebraic structure of group rings, Wiley (1977)
,[42] Mixed 3–manifolds are virtually special, preprint (2012)
, ,[43] Graph manifolds with boundary are virtually special, J. Topol. 7 (2014) 419 | DOI
, ,[44] Profinite groups, 40, Springer (2010) | DOI
, ,[45] Algebraic K–theory and its applications, 147, Springer (1994) | DOI
,[46] The strong Atiyah conjecture for virtually cocompact special groups, Math. Ann. 359 (2014) 629 | DOI
,[47] Galois cohomology, Springer (1997) | DOI
,[48] Novikov homology and three-manifolds, Oberwolfach Reports 4 (2007) 2334
,[49] A norm for the homology of 3–manifolds, Mem. Amer. Math. Soc. 339, Amer. Math. Soc. (1986) 99
,[50] On fibering certain foliated manifolds over S1, Topology 9 (1970) 153 | DOI
,[51] Taut normal surfaces, Topology 35 (1996) 55 | DOI
, ,[52] Introduction to combinatorial torsions, Birkhäuser (2001) | DOI
,[53] A homological estimate for the Thurston norm, preprint (2002)
,[54] Twisted Alexander polynomial for finitely presentable groups, Topology 33 (1994) 241 | DOI
,[55] Some problems on 3–manifolds, from: "Algebraic and geometric topology" (editor R J Milgram), Proc. Sympos. Pure Math. 32, Amer. Math. Soc. (1978) 313
,[56] Research announcement: the structure of groups with a quasiconvex hierarchy, Electron. Res. Announc. Math. Sci. 16 (2009) 44 | DOI
,[57] From riches to raags : 3–manifolds, right-angled Artin groups, and cubical geometry, 117, Amer. Math. Soc. (2012) | DOI
,[58] The structure of groups with a quasi-convex hierarchy, preprint (2012)
,Cité par Sources :