Thurston norm via Fox calculus
Geometry & topology, Tome 21 (2017) no. 6, pp. 3759-3784.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

In 1976 Thurston associated to a 3–manifold N a marked polytope in H1(N; ), which measures the minimal complexity of surfaces representing homology classes and determines all fibered classes in H1(N; ). Recently the first and third authors associated to a presentation π with two generators and one relator a marked polytope in H1(π; ) and showed that it determines the Bieri–Neumann–Strebel invariant of π. We show that if the fundamental group of a 3–manifold N admits such a presentation π, then the corresponding marked polytopes in H1(N; ) = H1(π; ) agree.

DOI : 10.2140/gt.2017.21.3759
Classification : 20J05, 57M05, 57M27, 57R19
Keywords: Thurston norm, $3$–manifold, Novikov ring, Fox calculus

Friedl, Stefan 1 ; Schreve, Kevin 2 ; Tillmann, Stephan 3

1 Fakultät für Mathematik, Universität Regensburg, Regensburg, Germany
2 Department of Mathematics, University of Michigan, Ann Arbor, MI, United States
3 School of Mathematics and Statistics, The University of Sydney, Sydney, NSW, Australia
@article{GT_2017_21_6_a10,
     author = {Friedl, Stefan and Schreve, Kevin and Tillmann, Stephan},
     title = {Thurston norm via {Fox} calculus},
     journal = {Geometry & topology},
     pages = {3759--3784},
     publisher = {mathdoc},
     volume = {21},
     number = {6},
     year = {2017},
     doi = {10.2140/gt.2017.21.3759},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2017.21.3759/}
}
TY  - JOUR
AU  - Friedl, Stefan
AU  - Schreve, Kevin
AU  - Tillmann, Stephan
TI  - Thurston norm via Fox calculus
JO  - Geometry & topology
PY  - 2017
SP  - 3759
EP  - 3784
VL  - 21
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2017.21.3759/
DO  - 10.2140/gt.2017.21.3759
ID  - GT_2017_21_6_a10
ER  - 
%0 Journal Article
%A Friedl, Stefan
%A Schreve, Kevin
%A Tillmann, Stephan
%T Thurston norm via Fox calculus
%J Geometry & topology
%D 2017
%P 3759-3784
%V 21
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2017.21.3759/
%R 10.2140/gt.2017.21.3759
%F GT_2017_21_6_a10
Friedl, Stefan; Schreve, Kevin; Tillmann, Stephan. Thurston norm via Fox calculus. Geometry & topology, Tome 21 (2017) no. 6, pp. 3759-3784. doi : 10.2140/gt.2017.21.3759. http://geodesic.mathdoc.fr/articles/10.2140/gt.2017.21.3759/

[1] I Agol, Criteria for virtual fibering, J. Topol. 1 (2008) 269 | DOI

[2] I Agol, The virtual Haken conjecture, Doc. Math. 18 (2013) 1045

[3] M Aschenbrenner, S Friedl, H Wilton, 3–manifold groups, Eur. Math. Soc. (2015) | DOI

[4] R Bieri, W D Neumann, R Strebel, A geometric invariant of discrete groups, Invent. Math. 90 (1987) 451 | DOI

[5] M Boileau, R Weidmann, The structure of 3–manifolds with two-generated fundamental group, Topology 44 (2005) 283 | DOI

[6] M Boileau, H Zieschang, Heegaard genus of closed orientable Seifert 3–manifolds, Invent. Math. 76 (1984) 455 | DOI

[7] S V Buyalo, P V Svetlov, Topological and geometric properties of graph manifolds, Algebra i Analiz 16 (2004) 3

[8] T D Cochran, Noncommutative knot theory, Algebr. Geom. Topol. 4 (2004) 347 | DOI

[9] T D Cochran, K E Orr, P Teichner, Knot concordance, Whitney towers and L2–signatures, Ann. of Math. 157 (2003) 433 | DOI

[10] D Cooper, S Tillmann, The Thurston norm via normal surfaces, Pacific J. Math. 239 (2009) 1 | DOI

[11] J Dodziuk, P Linnell, V Mathai, T Schick, S Yates, Approximating L2–invariants and the Atiyah conjecture, Comm. Pure Appl. Math. 56 (2003) 839 | DOI

[12] N M Dunfield, Alexander and Thurston norms of fibered 3–manifolds, Pacific J. Math. 200 (2001) 43 | DOI

[13] N M Dunfield, D Ramakrishnan, Increasing the number of fibered faces of arithmetic hyperbolic 3–manifolds, Amer. J. Math. 132 (2010) 53 | DOI

[14] N M Dunfield, D P Thurston, A random tunnel number one 3–manifold does not fiber over the circle, Geom. Topol. 10 (2006) 2431 | DOI

[15] N M Dunfield, W P Thurston, Finite covers of random 3–manifolds, Invent. Math. 166 (2006) 457 | DOI

[16] D B A Epstein, Finite presentations of groups and 3–manifolds, Quart. J. Math. Oxford Ser. 12 (1961) 205 | DOI

[17] R H Fox, Free differential calculus, I : Derivation in the free group ring, Ann. of Math. 57 (1953) 547 | DOI

[18] S Friedl, Reidemeister torsion, the Thurston norm and Harvey’s invariants, Pacific J. Math. 230 (2007) 271 | DOI

[19] S Friedl, T Kim, The Thurston norm, fibered manifolds and twisted Alexander polynomials, Topology 45 (2006) 929 | DOI

[20] S Friedl, T Kim, Twisted Alexander norms give lower bounds on the Thurston norm, Trans. Amer. Math. Soc. 360 (2008) 4597 | DOI

[21] S Friedl, T Kim, T Kitayama, Poincaré duality and degrees of twisted Alexander polynomials, Indiana Univ. Math. J. 61 (2012) 147 | DOI

[22] S Friedl, T Kitayama, The virtual fibering theorem for 3–manifolds, Enseign. Math. 60 (2014) 79 | DOI

[23] S Friedl, M Nagel, Twisted Reidemeister torsion and the Thurston norm : graph manifolds and finite representations, Illinois J. Math. 59 (2015) 691

[24] S Friedl, S Tillmann, Two-generator one-relator groups and marked polytopes, preprint (2015)

[25] S Friedl, S Vidussi, A survey of twisted Alexander polynomials, from: "The mathematics of knots: theory and application" (editors M Banagl, D Vogel), Contrib. Math. Comput. Sci. 1, Springer (2011) 45 | DOI

[26] S Friedl, S Vidussi, The Thurston norm and twisted Alexander polynomials, J. Reine Angew. Math. 707 (2015) 87 | DOI

[27] S L Harvey, Higher-order polynomial invariants of 3–manifolds giving lower bounds for the Thurston norm, Topology 44 (2005) 895 | DOI

[28] S Harvey, S Friedl, Non-commutative multivariable Reidemester torsion and the Thurston norm, Algebr. Geom. Topol. 7 (2007) 755 | DOI

[29] J Hempel, Residual finiteness for 3–manifolds, from: "Combinatorial group theory and topology" (editors S M Gersten, J R Stallings), Ann. of Math. Stud. 111, Princeton Univ. Press (1987) 379

[30] J A Hillman, D S Silver, S G Williams, On reciprocality of twisted Alexander invariants, Algebr. Geom. Topol. 10 (2010) 1017 | DOI

[31] J Johnson, Bridge number and the curve complex, preprint (2006)

[32] T Kitano, Twisted Alexander polynomial and Reidemeister torsion, Pacific J. Math. 174 (1996) 431 | DOI

[33] P H Kropholler, P A Linnell, J A Moody, Applications of a new K–theoretic theorem to soluble group rings, Proc. Amer. Math. Soc. 104 (1988) 675 | DOI

[34] T Li, Rank and genus of 3–manifolds, J. Amer. Math. Soc. 26 (2013) 777 | DOI

[35] P Linnell, T Schick, Finite group extensions and the Atiyah conjecture, J. Amer. Math. Soc. 20 (2007) 1003 | DOI

[36] Y Liu, Virtual cubulation of nonpositively curved graph manifolds, J. Topol. 6 (2013) 793 | DOI

[37] J Milnor, Whitehead torsion, Bull. Amer. Math. Soc. 72 (1966) 358 | DOI

[38] K Morimoto, On composite tunnel number one links, Topology Appl. 59 (1994) 59 | DOI

[39] K Morimoto, M Sakuma, On unknotting tunnels for knots, Math. Ann. 289 (1991) 143 | DOI

[40] F H Norwood, Every two-generator knot is prime, Proc. Amer. Math. Soc. 86 (1982) 143 | DOI

[41] D S Passman, The algebraic structure of group rings, Wiley (1977)

[42] P Przytycki, D Wise, Mixed 3–manifolds are virtually special, preprint (2012)

[43] P Przytycki, D T Wise, Graph manifolds with boundary are virtually special, J. Topol. 7 (2014) 419 | DOI

[44] L Ribes, P Zalesskii, Profinite groups, 40, Springer (2010) | DOI

[45] J Rosenberg, Algebraic K–theory and its applications, 147, Springer (1994) | DOI

[46] K Schreve, The strong Atiyah conjecture for virtually cocompact special groups, Math. Ann. 359 (2014) 629 | DOI

[47] J P Serre, Galois cohomology, Springer (1997) | DOI

[48] J C Sikorav, Novikov homology and three-manifolds, Oberwolfach Reports 4 (2007) 2334

[49] W P Thurston, A norm for the homology of 3–manifolds, Mem. Amer. Math. Soc. 339, Amer. Math. Soc. (1986) 99

[50] D Tischler, On fibering certain foliated manifolds over S1, Topology 9 (1970) 153 | DOI

[51] J L Tollefson, N Wang, Taut normal surfaces, Topology 35 (1996) 55 | DOI

[52] V Turaev, Introduction to combinatorial torsions, Birkhäuser (2001) | DOI

[53] V Turaev, A homological estimate for the Thurston norm, preprint (2002)

[54] M Wada, Twisted Alexander polynomial for finitely presentable groups, Topology 33 (1994) 241 | DOI

[55] F Waldhausen, Some problems on 3–manifolds, from: "Algebraic and geometric topology" (editor R J Milgram), Proc. Sympos. Pure Math. 32, Amer. Math. Soc. (1978) 313

[56] D T Wise, Research announcement: the structure of groups with a quasiconvex hierarchy, Electron. Res. Announc. Math. Sci. 16 (2009) 44 | DOI

[57] D T Wise, From riches to raags : 3–manifolds, right-angled Artin groups, and cubical geometry, 117, Amer. Math. Soc. (2012) | DOI

[58] D Wise, The structure of groups with a quasi-convex hierarchy, preprint (2012)

Cité par Sources :