Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
Let be a real closed field. We define the notion of a maximal framing for a representation of the fundamental group of a surface with values in . We show that ultralimits of maximal representations in admit such a framing, and that all maximal framed representations satisfy a suitable generalization of the classical collar lemma. In particular, this establishes a collar lemma for all maximal representations into . We then describe a procedure to get from representations in interesting actions on affine buildings, and in the case of representations admitting a maximal framing, we describe the structure of the elements of the group acting with zero translation length.
Burger, Marc 1 ; Pozzetti, Maria Beatrice 2
@article{GT_2017_21_6_a7, author = {Burger, Marc and Pozzetti, Maria Beatrice}, title = {Maximal representations, {non-Archimedean} {Siegel} spaces, and buildings}, journal = {Geometry & topology}, pages = {3539--3599}, publisher = {mathdoc}, volume = {21}, number = {6}, year = {2017}, doi = {10.2140/gt.2017.21.3539}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2017.21.3539/} }
TY - JOUR AU - Burger, Marc AU - Pozzetti, Maria Beatrice TI - Maximal representations, non-Archimedean Siegel spaces, and buildings JO - Geometry & topology PY - 2017 SP - 3539 EP - 3599 VL - 21 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2017.21.3539/ DO - 10.2140/gt.2017.21.3539 ID - GT_2017_21_6_a7 ER -
%0 Journal Article %A Burger, Marc %A Pozzetti, Maria Beatrice %T Maximal representations, non-Archimedean Siegel spaces, and buildings %J Geometry & topology %D 2017 %P 3539-3599 %V 21 %N 6 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.2140/gt.2017.21.3539/ %R 10.2140/gt.2017.21.3539 %F GT_2017_21_6_a7
Burger, Marc; Pozzetti, Maria Beatrice. Maximal representations, non-Archimedean Siegel spaces, and buildings. Geometry & topology, Tome 21 (2017) no. 6, pp. 3539-3599. doi : 10.2140/gt.2017.21.3539. http://geodesic.mathdoc.fr/articles/10.2140/gt.2017.21.3539/
[1] Tropicalization of group representations, Algebr. Geom. Topol. 8 (2008) 279 | DOI
,[2] Groupes réductifs sur un corps local, Inst. Hautes Études Sci. Publ. Math. 41 (1972) 5
, ,[3] The real spectrum compactification of Teichmüller space, from: "Geometry of group representations" (editors W M Goldman, A R Magid), Contemp. Math. 74, Amer. Math. Soc. (1988) 51 | DOI
,[4] The tree of a non-Archimedean hyperbolic plane, from: "Geometry of group representations" (editors W M Goldman, A R Magid), Contemp. Math. 74, Amer. Math. Soc. (1988) 83 | DOI
,[5] Maximal representations of surface groups : symplectic Anosov structures, Pure Appl. Math. Q. 1 (2005) 543 | DOI
, , , ,[6] Surface group representations with maximal Toledo invariant, Ann. of Math. 172 (2010) 517 | DOI
, , ,[7] Asymptotics of Higgs bundles in the Hitchin component, Adv. Math. 307 (2017) 488 | DOI
, ,[8] An isomorphism theorem for real-closed fields, Ann. of Math. 61 (1955) 542 | DOI
, , ,[9] Linear algebra and geometry: a second course, Dover (2003)
,[10] Constructing buildings and harmonic maps, preprint (2015)
, , , ,[11] Rigidity of quasi-isometries for symmetric spaces and Euclidean buildings, Inst. Hautes Études Sci. Publ. Math. 86 (1997) 115
, ,[12] Asymptotic cones of finitely presented groups, Adv. Math. 193 (2005) 142 | DOI
, , , ,[13] Asymptotic cones and ultrapowers of Lie groups, Bull. Symbolic Logic 10 (2004) 175 | DOI
, ,[14] Higher laminations and affine buildings, Geom. Topol. 20 (2016) 1673 | DOI
,[15] Collar lemma for Hitchin representations, Geom. Topol. 21 (2017) 2243 | DOI
, ,[16] Nonarchimedean fields and asymptotic expansions, North-Holland (1975)
, ,[17] The Weil representation, Maslov index and theta series, 6, Birkhäuser (1980)
, ,[18] Convex R‘P2 structures and cubic differentials under neck separation, preprint (2015)
,[19] Ends of the moduli space of Higgs bundles, Duke Math. J. 165 (2016) 2227 | DOI
, , , ,[20] Immeubles affines : construction par les normes et étude des isométries, from: "Crystallographic groups and their generalizations" (editors P Igodt, H Abels, Y Félix, F Grunewald), Contemp. Math. 262, Amer. Math. Soc. (2000) 263 | DOI
,[21] Sous-groupes elliptiques de groupes linéaires sur un corps valué, J. Lie Theory 13 (2003) 271
,[22] Compactification d’espaces de représentations de groupes de type fini, Math. Z. 272 (2012) 51 | DOI
,[23] Invariant subspaces for some surface groups acting on A2–Euclidean buildings, preprint (2015)
,[24] Function theory on some nonarchimedean fields, Amer. Math. Monthly 80 (1973) 87 | DOI
,[25] Algebraic structures of symmetric domains, 4, Iwanami Shoten (1980)
,[26] Symplectic geometry, Amer. J. Math. 65 (1943) 1 | DOI
,[27] Fenchel–Nielsen coordinates for maximal representations, Geom. Dedicata 176 (2015) 45 | DOI
,[28] Asymptotic cones of symmetric spaces, PhD thesis, The University of Utah (2002)
,[29] The degeneration of convex RP2 structures on surfaces, Proc. Lond. Math. Soc. 111 (2015) 967 | DOI
,[30] Degeneration of Hitchin representations along internal sequences, Geom. Funct. Anal. 25 (2015) 1588 | DOI
,Cité par Sources :