Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We prove that in the graded commutative ring , all positive degree elements are multiplicatively nilpotent. The analogous statements also hold for and .
Blumberg, Andrew 1 ; Mandell, Michael 2
@article{GT_2017_21_6_a5, author = {Blumberg, Andrew and Mandell, Michael}, title = {The nilpotence theorem for the algebraic {K{\textendash}theory} of the sphere spectrum}, journal = {Geometry & topology}, pages = {3453--3466}, publisher = {mathdoc}, volume = {21}, number = {6}, year = {2017}, doi = {10.2140/gt.2017.21.3453}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2017.21.3453/} }
TY - JOUR AU - Blumberg, Andrew AU - Mandell, Michael TI - The nilpotence theorem for the algebraic K–theory of the sphere spectrum JO - Geometry & topology PY - 2017 SP - 3453 EP - 3466 VL - 21 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2017.21.3453/ DO - 10.2140/gt.2017.21.3453 ID - GT_2017_21_6_a5 ER -
%0 Journal Article %A Blumberg, Andrew %A Mandell, Michael %T The nilpotence theorem for the algebraic K–theory of the sphere spectrum %J Geometry & topology %D 2017 %P 3453-3466 %V 21 %N 6 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.2140/gt.2017.21.3453/ %R 10.2140/gt.2017.21.3453 %F GT_2017_21_6_a5
Blumberg, Andrew; Mandell, Michael. The nilpotence theorem for the algebraic K–theory of the sphere spectrum. Geometry & topology, Tome 21 (2017) no. 6, pp. 3453-3466. doi : 10.2140/gt.2017.21.3453. http://geodesic.mathdoc.fr/articles/10.2140/gt.2017.21.3453/
[1] The spectrum of prime ideals in tensor triangulated categories, J. Reine Angew. Math. 588 (2005) 149 | DOI
,[2] Spectra, spectra, spectra—tensor triangular spectra versus Zariski spectra of endomorphism rings, Algebr. Geom. Topol. 10 (2010) 1521 | DOI
,[3] On values of zeta functions and l–adic Euler characteristics, Invent. Math. 50 (1978) 35 | DOI
, ,[4] Homology operations in the topological cyclic homology of a point, Geom. Topol. 14 (2010) 735 | DOI
, ,[5] A universal characterization of higher algebraic K–theory, Geom. Topol. 17 (2013) 733 | DOI
, , ,[6] Uniqueness of the multiplicative cyclotomic trace, Adv. Math. 260 (2014) 191 | DOI
, , ,[7] Algebraic K–theory and abstract homotopy theory, Adv. Math. 226 (2011) 3760 | DOI
, ,[8] Localization for THH(ku) and the topological Hochschild and cyclic homology of Waldhausen categories, preprint (2014)
, ,[9] The cyclotomic trace and algebraic K–theory of spaces, Invent. Math. 111 (1993) 465 | DOI
, , ,[10] Topological cyclic homology of the integers, from: "–theory" (editors C Kassel, J L Loday, N Schappacher), Astérisque 226, Soc. Math. France (1994) 57
, ,[11] Stable real cohomology of arithmetic groups, Ann. Sci. École Norm. Sup. 7 (1974) 235 | DOI
,[12] The localization of spectra with respect to homology, Topology 18 (1979) 257 | DOI
,[13] Relative K–theory and topological cyclic homology, Acta Math. 179 (1997) 223 | DOI
,[14] Twisted homological stability for general linear groups, Ann. of Math. 111 (1980) 239 | DOI
,[15] On the K–theory spectrum of a ring of algebraic integers, -Theory 14 (1998) 201 | DOI
, ,[16] The Iwasawa invariant μp vanishes for abelian number fields, Ann. of Math. 109 (1979) 377 | DOI
, ,[17] The cyclotomic trace map and values of zeta functions, from: "Algebra and number theory" (editor R Tandon), Hindustan Book Agency (2005) 211
,[18] On p–adic L–functions and cyclotomic fields, Nagoya Math. J. 56 (1975) 61
,[19] Algebraic K–theory and the p–adic L–function, unpublished notes
,[20] On the K–theory of finite algebras over Witt vectors of perfect fields, Topology 36 (1997) 29 | DOI
, ,[21] Global methods in homotopy theory, from: "Homotopy theory" (editors E Rees, J D S Jones), London Math. Soc. Lecture Note Ser. 117, Cambridge Univ. Press (1987) 73
,[22] The stable symplectic category and a conjecture of Kontsevich, preprint (2012)
, ,[23] Class fields of abelian extensions of Q, Invent. Math. 76 (1984) 179 | DOI
, ,[24] Homotopy-theoretically enriched categories of noncommutative motives, Res. Math. Sci. 2 (2015) | DOI
,[25] The chromatic tower for D(R), Topology 31 (1992) 519 | DOI
,[26] Higher algebraic K–theory, I, from: "Algebraic –theory, I: Higher –theories" (editor H Bass), Lecture Notes in Math. 341, Springer (1973) 85 | DOI
,[27] Finite generation of the groups Ki of rings of algebraic integers, from: "Algebraic –theory, I: Higher –theories" (editor H Bass), Lecture Notes in Math. 341, Springer (1973) 179 | DOI
,[28] The Hatcher–Waldhausen map is a spectrum map, Math. Ann. 299 (1994) 529 | DOI
,[29] Two-primary algebraic K–theory of pointed spaces, Topology 41 (2002) 873 | DOI
,[30] The smooth Whitehead spectrum of a point at odd regular primes, Geom. Topol. 7 (2003) 155 | DOI
,[31] Two-primary algebraic K–theory of rings of integers in number fields, J. Amer. Math. Soc. 13 (2000) 1 | DOI
, ,[32] K–théorie des anneaux d’entiers de corps de nombres et cohomologie étale, Invent. Math. 55 (1979) 251 | DOI
,[33] Duality theorems in Galois cohomology over number fields, from: "Proc. Internat. Congr. Mathematicians, I" (editor V Stenström), Inst. Mittag-Leffler (1963) 288
,[34] Algebraic K–theory and étale cohomology, Ann. Sci. École Norm. Sup. 18 (1985) 437 | DOI
,[35] The classification of triangulated subcategories, Compositio Math. 105 (1997) 1 | DOI
,[36] Algebraic K–theory of spaces, from: "Algebraic and geometric topology" (editors A Ranicki, N Levitt, F Quinn), Lecture Notes in Math. 1126, Springer (1985) 318 | DOI
,[37] Spaces of PL manifolds and categories of simple maps, 186, Princeton Univ. Press (2013) | DOI
, , ,[38] Introduction to cyclotomic fields, 83, Springer (1997) | DOI
,[39] The K–book : an introduction to algebraic K-theory, 145, Amer. Math. Soc. (2013)
,[40] Automorphisms of manifolds, from: "Surveys on surgery theory, II" (editors S Cappell, A Ranicki, J Rosenberg), Ann. of Math. Stud. 149, Princeton Univ. Press (2001) 165
, ,Cité par Sources :