The nilpotence theorem for the algebraic K–theory of the sphere spectrum
Geometry & topology, Tome 21 (2017) no. 6, pp. 3453-3466.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We prove that in the graded commutative ring K(S), all positive degree elements are multiplicatively nilpotent. The analogous statements also hold for TC(S)p and K().

DOI : 10.2140/gt.2017.21.3453
Classification : 19D10
Keywords: algebraic $K$–theory of spaces, nilpotence theorem, $p$–adic $L$–function

Blumberg, Andrew 1 ; Mandell, Michael 2

1 Department of Mathematics, University of Texas, Austin, TX, United States
2 Department of Mathematics, Indiana University, Bloomington, IN, United States
@article{GT_2017_21_6_a5,
     author = {Blumberg, Andrew and Mandell, Michael},
     title = {The nilpotence theorem for the algebraic {K{\textendash}theory} of the sphere spectrum},
     journal = {Geometry & topology},
     pages = {3453--3466},
     publisher = {mathdoc},
     volume = {21},
     number = {6},
     year = {2017},
     doi = {10.2140/gt.2017.21.3453},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2017.21.3453/}
}
TY  - JOUR
AU  - Blumberg, Andrew
AU  - Mandell, Michael
TI  - The nilpotence theorem for the algebraic K–theory of the sphere spectrum
JO  - Geometry & topology
PY  - 2017
SP  - 3453
EP  - 3466
VL  - 21
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2017.21.3453/
DO  - 10.2140/gt.2017.21.3453
ID  - GT_2017_21_6_a5
ER  - 
%0 Journal Article
%A Blumberg, Andrew
%A Mandell, Michael
%T The nilpotence theorem for the algebraic K–theory of the sphere spectrum
%J Geometry & topology
%D 2017
%P 3453-3466
%V 21
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2017.21.3453/
%R 10.2140/gt.2017.21.3453
%F GT_2017_21_6_a5
Blumberg, Andrew; Mandell, Michael. The nilpotence theorem for the algebraic K–theory of the sphere spectrum. Geometry & topology, Tome 21 (2017) no. 6, pp. 3453-3466. doi : 10.2140/gt.2017.21.3453. http://geodesic.mathdoc.fr/articles/10.2140/gt.2017.21.3453/

[1] P Balmer, The spectrum of prime ideals in tensor triangulated categories, J. Reine Angew. Math. 588 (2005) 149 | DOI

[2] P Balmer, Spectra, spectra, spectra—tensor triangular spectra versus Zariski spectra of endomorphism rings, Algebr. Geom. Topol. 10 (2010) 1521 | DOI

[3] P Báyer, J Neukirch, On values of zeta functions and l–adic Euler characteristics, Invent. Math. 50 (1978) 35 | DOI

[4] H S Bergsaker, J Rognes, Homology operations in the topological cyclic homology of a point, Geom. Topol. 14 (2010) 735 | DOI

[5] A J Blumberg, D Gepner, G Tabuada, A universal characterization of higher algebraic K–theory, Geom. Topol. 17 (2013) 733 | DOI

[6] A J Blumberg, D Gepner, G Tabuada, Uniqueness of the multiplicative cyclotomic trace, Adv. Math. 260 (2014) 191 | DOI

[7] A J Blumberg, M A Mandell, Algebraic K–theory and abstract homotopy theory, Adv. Math. 226 (2011) 3760 | DOI

[8] A J Blumberg, M A Mandell, Localization for THH(ku) and the topological Hochschild and cyclic homology of Waldhausen categories, preprint (2014)

[9] M Bökstedt, W C Hsiang, I Madsen, The cyclotomic trace and algebraic K–theory of spaces, Invent. Math. 111 (1993) 465 | DOI

[10] M Bökstedt, I Madsen, Topological cyclic homology of the integers, from: "–theory" (editors C Kassel, J L Loday, N Schappacher), Astérisque 226, Soc. Math. France (1994) 57

[11] A Borel, Stable real cohomology of arithmetic groups, Ann. Sci. École Norm. Sup. 7 (1974) 235 | DOI

[12] A K Bousfield, The localization of spectra with respect to homology, Topology 18 (1979) 257 | DOI

[13] B I Dundas, Relative K–theory and topological cyclic homology, Acta Math. 179 (1997) 223 | DOI

[14] W G Dwyer, Twisted homological stability for general linear groups, Ann. of Math. 111 (1980) 239 | DOI

[15] W G Dwyer, S A Mitchell, On the K–theory spectrum of a ring of algebraic integers, -Theory 14 (1998) 201 | DOI

[16] B Ferrero, L C Washington, The Iwasawa invariant μp vanishes for abelian number fields, Ann. of Math. 109 (1979) 377 | DOI

[17] T Geisser, The cyclotomic trace map and values of zeta functions, from: "Algebra and number theory" (editor R Tandon), Hindustan Book Agency (2005) 211

[18] R Greenberg, On p–adic L–functions and cyclotomic fields, Nagoya Math. J. 56 (1975) 61

[19] L Hesselholt, Algebraic K–theory and the p–adic L–function, unpublished notes

[20] L Hesselholt, I Madsen, On the K–theory of finite algebras over Witt vectors of perfect fields, Topology 36 (1997) 29 | DOI

[21] M J Hopkins, Global methods in homotopy theory, from: "Homotopy theory" (editors E Rees, J D S Jones), London Math. Soc. Lecture Note Ser. 117, Cambridge Univ. Press (1987) 73

[22] N Kitchloo, J Morava, The stable symplectic category and a conjecture of Kontsevich, preprint (2012)

[23] B Mazur, A Wiles, Class fields of abelian extensions of Q, Invent. Math. 76 (1984) 179 | DOI

[24] J Morava, Homotopy-theoretically enriched categories of noncommutative motives, Res. Math. Sci. 2 (2015) | DOI

[25] A Neeman, The chromatic tower for D(R), Topology 31 (1992) 519 | DOI

[26] D Quillen, Higher algebraic K–theory, I, from: "Algebraic –theory, I: Higher –theories" (editor H Bass), Lecture Notes in Math. 341, Springer (1973) 85 | DOI

[27] D Quillen, Finite generation of the groups Ki of rings of algebraic integers, from: "Algebraic –theory, I: Higher –theories" (editor H Bass), Lecture Notes in Math. 341, Springer (1973) 179 | DOI

[28] J Rognes, The Hatcher–Waldhausen map is a spectrum map, Math. Ann. 299 (1994) 529 | DOI

[29] J Rognes, Two-primary algebraic K–theory of pointed spaces, Topology 41 (2002) 873 | DOI

[30] J Rognes, The smooth Whitehead spectrum of a point at odd regular primes, Geom. Topol. 7 (2003) 155 | DOI

[31] J Rognes, C Weibel, Two-primary algebraic K–theory of rings of integers in number fields, J. Amer. Math. Soc. 13 (2000) 1 | DOI

[32] C Soulé, K–théorie des anneaux d’entiers de corps de nombres et cohomologie étale, Invent. Math. 55 (1979) 251 | DOI

[33] J Tate, Duality theorems in Galois cohomology over number fields, from: "Proc. Internat. Congr. Mathematicians, I" (editor V Stenström), Inst. Mittag-Leffler (1963) 288

[34] R W Thomason, Algebraic K–theory and étale cohomology, Ann. Sci. École Norm. Sup. 18 (1985) 437 | DOI

[35] R W Thomason, The classification of triangulated subcategories, Compositio Math. 105 (1997) 1 | DOI

[36] F Waldhausen, Algebraic K–theory of spaces, from: "Algebraic and geometric topology" (editors A Ranicki, N Levitt, F Quinn), Lecture Notes in Math. 1126, Springer (1985) 318 | DOI

[37] F Waldhausen, B Jahren, J Rognes, Spaces of PL manifolds and categories of simple maps, 186, Princeton Univ. Press (2013) | DOI

[38] L C Washington, Introduction to cyclotomic fields, 83, Springer (1997) | DOI

[39] C A Weibel, The K–book : an introduction to algebraic K-theory, 145, Amer. Math. Soc. (2013)

[40] M Weiss, B Williams, Automorphisms of manifolds, from: "Surveys on surgery theory, II" (editors S Cappell, A Ranicki, J Rosenberg), Ann. of Math. Stud. 149, Princeton Univ. Press (2001) 165

Cité par Sources :