Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We prove that the profinite completion of the fundamental group of a compact –manifold satisfies a Tits alternative: if a closed subgroup does not contain a free pro- subgroup for any , then is virtually soluble, and furthermore of a very particular form. In particular, the profinite completion of the fundamental group of a closed, hyperbolic –manifold does not contain a subgroup isomorphic to . This gives a profinite characterization of hyperbolicity among irreducible –manifolds. We also characterize Seifert fibred –manifolds as precisely those for which the profinite completion of the fundamental group has a nontrivial procyclic normal subgroup. Our techniques also apply to hyperbolic, virtually special groups, in the sense of Haglund and Wise. Finally, we prove that every finitely generated pro- subgroup of the profinite completion of a torsion-free, hyperbolic, virtually special group is free pro-.
Wilton, Henry 1 ; Zalesskii, Pavel 2
@article{GT_2017_21_1_a7, author = {Wilton, Henry and Zalesskii, Pavel}, title = {Distinguishing geometries using finite quotients}, journal = {Geometry & topology}, pages = {345--384}, publisher = {mathdoc}, volume = {21}, number = {1}, year = {2017}, doi = {10.2140/gt.2017.21.345}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2017.21.345/} }
TY - JOUR AU - Wilton, Henry AU - Zalesskii, Pavel TI - Distinguishing geometries using finite quotients JO - Geometry & topology PY - 2017 SP - 345 EP - 384 VL - 21 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2017.21.345/ DO - 10.2140/gt.2017.21.345 ID - GT_2017_21_1_a7 ER -
Wilton, Henry; Zalesskii, Pavel. Distinguishing geometries using finite quotients. Geometry & topology, Tome 21 (2017) no. 1, pp. 345-384. doi : 10.2140/gt.2017.21.345. http://geodesic.mathdoc.fr/articles/10.2140/gt.2017.21.345/
[1] The virtual Haken conjecture, Doc. Math. 18 (2013) 1045
,[2] Residual finiteness, QCERF and fillings of hyperbolic groups, Geom. Topol. 13 (2009) 1043 | DOI
, , ,[3] 3–manifold groups, European Mathematical Society (2015) | DOI
, , ,[4] A restricted Magnus property for profinite surface groups, preprint (2014)
, ,[5] Determining Fuchsian groups by their finite quotients, Israel Journal of Mathematics 214 (2016) 1 | DOI
, , ,[6] Positivity of the universal pairing in 3 dimensions, J. Amer. Math. Soc. 23 (2010) 107 | DOI
, , ,[7] Convergence groups and Seifert fibered 3–manifolds, Invent. Math. 118 (1994) 441 | DOI
, ,[8] Groups, trees and projective modules, 790, Springer (1980)
,[9] Torus bundles not distinguished by TQFT invariants, Geom. Topol. 17 (2013) 2289 | DOI
,[10] Convergence groups are Fuchsian groups, Ann. of Math. 136 (1992) 447 | DOI
,[11] Widths of subgroups, Trans. Amer. Math. Soc. 350 (1998) 321 | DOI
, , , ,[12] Quasiconvexity and Dehn filling, in preparation
, ,[13] Cohomological goodness and the profinite completion of Bianchi groups, Duke Math. J. 144 (2008) 53 | DOI
, , ,[14] Special cube complexes, Geom. Funct. Anal. 17 (2008) 1551 | DOI
, ,[15] Coxeter groups are virtually special, Adv. Math. 224 (2010) 1890 | DOI
, ,[16] A combination theorem for special cube complexes, Ann. of Math. 176 (2012) 1427 | DOI
, ,[17] Abelian subgroup separability of Haken 3–manifolds and closed hyperbolic n–orbifolds, Proc. London Math. Soc. 83 (2001) 626 | DOI
,[18] Finite quotients of rings and applications to subgroup separability of linear groups, Trans. Amer. Math. Soc. 357 (2005) 1995 | DOI
,[19] Separability of double cosets and conjugacy classes in 3–manifold groups, J. Lond. Math. Soc. 87 (2013) 269 | DOI
, , ,[20] Residual finiteness for 3–manifolds, from: "Combinatorial group theory and topology" (editors S M Gersten, J R Stallings), Ann. of Math. Stud. 111, Princeton Univ. Press (1987) 379
,[21] Some 3–manifold groups with the same finite quotients, preprint (2014)
,[22] Virtually free pro-p groups whose torsion elements have finite centralizer, Bull. Lond. Math. Soc. 40 (2008) 929 | DOI
, ,[23] Virtually free pro-p groups, Publ. Math. Inst. Hautes Études Sci. 118 (2013) 193 | DOI
, ,[24] Splitting theorems for pro-p groups acting on pro-p trees, Selecta Mathematica 22 (2016) 1245 | DOI
, , ,[25] Relative hyperbolicity and relative quasiconvexity for countable groups, Algebr. Geom. Topol. 10 (2010) 1807 | DOI
,[26] Cubulating malnormal amalgams, Invent. Math. 199 (2015) 293 | DOI
, ,[27] Immersing almost geodesic surfaces in a closed hyperbolic three manifold, Ann. of Math. 175 (2012) 1127 | DOI
, ,[28] Notes on Perelman’s papers, Geom. Topol. 12 (2008) 2587 | DOI
, ,[29] Grothendieck’s problem for 3–manifold groups, Groups Geom. Dyn. 5 (2011) 479 | DOI
, ,[30] The Seifert conjecture and groups which are coarse quasiisometric to planes, unpublished (1987)
,[31] Hereditary conjugacy separability of right-angled Artin groups and its applications, Groups Geom. Dyn. 6 (2012) 335 | DOI
,[32] One-relator groups with torsion are conjugacy separable, J. Algebra 382 (2013) 39 | DOI
, ,[33] Ricci flow and the Poincaré conjecture, 3, Amer. Math. Soc. (2007)
, ,[34] The geometrization conjecture, 5, Amer. Math. Soc. (2014)
, ,[35] Some results on one-relator groups, Bull. Amer. Math. Soc. 74 (1968) 568 | DOI
,[36] Cubulating random groups at density less than , Trans. Amer. Math. Soc. 363 (2011) 4701 | DOI
, ,[37] The entropy formula for the Ricci flow and its geometric applications, preprint (2002)
,[38] Finite extinction time for the solutions to the Ricci flow on certain three-manifolds, preprint (2003)
,[39] Ricci flow with surgery on three-manifolds, preprint (2003)
,[40] Profinite properties of discrete groups, from: "Groups St Andrews 2013" (editors C M Campbell, M R Quick, E F Robertson), London Math. Soc. Lecture Note Ser. 422, Cambridge Univ. Press (2015) 73 | DOI
,[41] Pro-p trees and applications, from: "New horizons in pro-p groups" (editors M du Sautoy, D Segal, A Shalev), Progr. Math. 184, Birkhäuser (2000) 75 | DOI
, ,[42] Profinite groups, 40, Springer (2010) | DOI
, ,[43] Subgroups of surface groups are almost geometric, J. London Math. Soc. 17 (1978) 555 | DOI
,[44] The geometries of 3–manifolds, Bull. London Math. Soc. 15 (1983) 401 | DOI
,[45] Arbres, amalgames, SL2, 46, Société Mathématique de France (1977)
,[46] Conjugacy separability of groups of integer matrices, Proc. Amer. Math. Soc. 32 (1972) 1 | DOI
,[47] Homeomorphic conjugates of Fuchsian groups, J. Reine Angew. Math. 391 (1988) 1 | DOI
,[48] Profinite properties of graph manifolds, Geom. Dedicata 147 (2010) 29 | DOI
, ,[49] Cubulating small cancellation groups, Geom. Funct. Anal. 14 (2004) 150 | DOI
,[50] The structure of groups with a quasi-convex hierarchy, preprint (2012)
,[51] Geometric characterization of free constructions of profinite groups, Sibirsk. Mat. Zh. 30 (1989) 73 | DOI
,[52] Profinite groups, without free nonabelian pro-p–subgroups, that act on trees, Mat. Sb. 181 (1990) 57
,[53] Open subgroups of free profinite products, from: "Proceedings of the International Conference on Algebra" (editors L A Bokut’, Y L Ershov, A I Kostrikin), Contemp. Math. 131, Amer. Math. Soc. (1992) 473
,[54] Subgroups of profinite groups acting on trees, Mat. Sb. 135(177) (1988) 419
, ,[55] Fundamental groups of graphs of profinite groups, Algebra i Analiz 1 (1989) 117
, ,Cité par Sources :