A complex hyperbolic Riley slice
Geometry & topology, Tome 21 (2017) no. 6, pp. 3391-3451.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We study subgroups of PU(2,1) generated by two noncommuting unipotent maps A and B whose product AB is also unipotent. We call U the set of conjugacy classes of such groups. We provide a set of coordinates on U that make it homeomorphic to 2. By considering the action on complex hyperbolic space H2 of groups in U, we describe a two-dimensional disc Z in U that parametrises a family of discrete groups. As a corollary, we give a proof of a conjecture of Schwartz for (3,3,)–triangle groups. We also consider a particular group on the boundary of the disc Z where the commutator [A,B] is also unipotent. We show that the boundary of the quotient orbifold associated to the latter group gives a spherical CR uniformisation of the Whitehead link complement.

DOI : 10.2140/gt.2017.21.3391
Classification : 20H10, 22E40, 51M10, 57M50
Keywords: discrete subgroups of Lie groups, complex hyperbolic geometry, spherical CR structures, complex hyperbolic quasi-Fuchsian groups

Parker, John 1 ; Will, Pierre 2

1 Department of Mathematical Sciences, Durham University, Durham, United Kingdom
2 Université Grenoble Alpes, Institut Fourier, Saint-Martin-d’Hères, France
@article{GT_2017_21_6_a4,
     author = {Parker, John and Will, Pierre},
     title = {A complex hyperbolic {Riley} slice},
     journal = {Geometry & topology},
     pages = {3391--3451},
     publisher = {mathdoc},
     volume = {21},
     number = {6},
     year = {2017},
     doi = {10.2140/gt.2017.21.3391},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2017.21.3391/}
}
TY  - JOUR
AU  - Parker, John
AU  - Will, Pierre
TI  - A complex hyperbolic Riley slice
JO  - Geometry & topology
PY  - 2017
SP  - 3391
EP  - 3451
VL  - 21
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2017.21.3391/
DO  - 10.2140/gt.2017.21.3391
ID  - GT_2017_21_6_a4
ER  - 
%0 Journal Article
%A Parker, John
%A Will, Pierre
%T A complex hyperbolic Riley slice
%J Geometry & topology
%D 2017
%P 3391-3451
%V 21
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2017.21.3391/
%R 10.2140/gt.2017.21.3391
%F GT_2017_21_6_a4
Parker, John; Will, Pierre. A complex hyperbolic Riley slice. Geometry & topology, Tome 21 (2017) no. 6, pp. 3391-3451. doi : 10.2140/gt.2017.21.3391. http://geodesic.mathdoc.fr/articles/10.2140/gt.2017.21.3391/

[1] H Akiyoshi, M Sakuma, M Wada, Y Yamashita, Punctured torus groups and 2–bridge knot groups, I, 1909, Springer (2007) | DOI

[2] A F Beardon, The geometry of discrete groups, 91, Springer (1983) | DOI

[3] S S Chen, L Greenberg, Hyperbolic spaces, from: "Contributions to analysis: a collection of papers dedicated to Lipman Bers" (editors L V Ahlfors, I Kra, B Maskit, L Nirenberg), Academic Press (1974) 49

[4] D Cooper, D D Long, M B Thistlethwaite, Flexing closed hyperbolic manifolds, Geom. Topol. 11 (2007) 2413 | DOI

[5] M Culler, N Dunfield, M Goerner, J Weeks, SnapPy, a computer program for studying the geometry and topology of 3–manifolds

[6] M Deraux, On spherical CR uniformization of 3–manifolds, Exp. Math. 24 (2015) 355 | DOI

[7] M Deraux, A 1–parameter family of spherical CR uniformizations of the figure eight knot complement, Geom. Topol. 20 (2016) 3571 | DOI

[8] M Deraux, E Falbel, Complex hyperbolic geometry of the figure-eight knot, Geom. Topol. 19 (2015) 237 | DOI

[9] M Deraux, J R Parker, J Paupert, New non-arithmetic complex hyperbolic lattices, Invent. Math. 203 (2016) 681 | DOI

[10] D B A Epstein, C Petronio, An exposition of Poincaré’s polyhedron theorem, Enseign. Math. 40 (1994) 113 | DOI

[11] E Falbel, A spherical CR structure on the complement of the figure eight knot with discrete holonomy, J. Differential Geom. 79 (2008) 69

[12] E Falbel, A Guilloux, P V Koseleff, F Rouillier, M Thistlethwaite, Character varieties for SL(3, C) : the figure eight knot, Exp. Math. 25 (2016) 219 | DOI

[13] E Falbel, P V Koseleff, F Rouillier, Representations of fundamental groups of 3–manifolds into PGL(3, C) : exact computations in low complexity, Geom. Dedicata 177 (2015) 229 | DOI

[14] E Falbel, J R Parker, The geometry of the Eisenstein–Picard modular group, Duke Math. J. 131 (2006) 249 | DOI

[15] W M Goldman, Complex hyperbolic geometry, Clarendon (1999)

[16] W M Goldman, J R Parker, Complex hyperbolic ideal triangle groups, J. Reine Angew. Math. 425 (1992) 71

[17] W M Goldman, J R Parker, Dirichlet polyhedra for dihedral groups acting on complex hyperbolic space, J. Geom. Anal. 2 (1992) 517 | DOI

[18] M Heusener, V Munoz, J Porti, The SL(3, C)–character variety of the figure eight knot, preprint (2015)

[19] L Keen, C Series, The Riley slice of Schottky space, Proc. London Math. Soc. 69 (1994) 72 | DOI

[20] B Martelli, C Petronio, Dehn filling of the “magic” 3–manifold, Comm. Anal. Geom. 14 (2006) 969

[21] G J Martin, On discrete isometry groups of negative curvature, Pacific J. Math. 160 (1993) 109

[22] G D Mostow, On a remarkable class of polyhedra in complex hyperbolic space, Pacific J. Math. 86 (1980) 171

[23] J R Parker, Complex hyperbolic Kleinian groups, preprint

[24] J R Parker, I D Platis, Complex hyperbolic quasi-Fuchsian groups, from: "Geometry of Riemann surfaces" (editors F P Gardiner, G González-Diez, C Kourouniotis), London Math. Soc. Lecture Note Ser. 368, Cambridge Univ. Press (2010) 309

[25] J R Parker, J Wang, B Xie, Complex hyperbolic (3,3,n) triangle groups, Pacific J. Math. 280 (2016) 433 | DOI

[26] J R Parker, P Will, Complex hyperbolic free groups with many parabolic elements, from: "Geometry, groups and dynamics" (editors C S Aravinda, W M Goldman, K Gongopadhyay, A Lubotzky, M Mj, A Weaver), Contemp. Math. 639, Amer. Math. Soc. (2015) 327 | DOI

[27] J Paupert, P Will, Real reflections, commutators and cross-ratios in complex hyperbolic space, Groups Geom. Dyn. 11 (2013) 311 | DOI

[28] A Pratoussevitch, Traces in complex hyperbolic triangle groups, Geom. Dedicata 111 (2005) 159 | DOI

[29] J G Ratcliffe, Foundations of hyperbolic manifolds, 149, Springer (2006) | DOI

[30] R E Schwartz, Degenerating the complex hyperbolic ideal triangle groups, Acta Math. 186 (2001) 105 | DOI

[31] R E Schwartz, Ideal triangle groups, dented tori, and numerical analysis, Ann. of Math. 153 (2001) 533 | DOI

[32] R E Schwartz, Complex hyperbolic triangle groups, from: "Proceedings of the International Congress of Mathematicians, II" (editor T Li), Higher Ed. Press (2002) 339

[33] R E Schwartz, A better proof of the Goldman–Parker conjecture, Geom. Topol. 9 (2005) 1539 | DOI

[34] R E Schwartz, Spherical CR geometry and Dehn surgery, 165, Princeton Univ. Press (2007) | DOI

[35] W P Thurston, The geometry and topology of three-manifolds, lecture notes (1979)

[36] P Will, Traces, cross-ratios and 2–generator subgroups of SU(2,1), Canad. J. Math. 61 (2009) 1407 | DOI

[37] P Will, Bending Fuchsian representations of fundamental groups of cusped surfaces in PU(2,1), J. Differential Geom. 90 (2012) 473

[38] P Will, Two-generator groups acting on the complex hyperbolic plane, from: "Handbook of Teichmüller theory, VI" (editor A Papadopoulos), IMRA Lect. Math. Theor. Phys. 27, Eur. Math. Soc. (2016) 276

Cité par Sources :