Koszul duality patterns in Floer theory
Geometry & topology, Tome 21 (2017) no. 6, pp. 3313-3389.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We study symplectic invariants of the open symplectic manifolds XΓ obtained by plumbing cotangent bundles of 2–spheres according to a plumbing tree Γ. For any tree Γ, we calculate (DG) algebra models of the Fukaya category (XΓ) of closed exact Lagrangians in XΓ and the wrapped Fukaya category W(XΓ). When  Γ is a Dynkin tree of type An or Dn (and conjecturally also for E6,E7,E8), we prove that these models for the Fukaya category (XΓ) and W(XΓ) are related by (derived) Koszul duality. As an application, we give explicit computations of symplectic cohomology of XΓ for Γ = An,Dn, based on the Legendrian surgery formula of Bourgeois, Ekholm and Eliashberg.

DOI : 10.2140/gt.2017.21.3313
Classification : 57R58, 16E45
Keywords: Koszul duality, Floer theory, Legendrian surgery

Etgü, Tolga 1 ; Lekili, Yankı 2

1 Department of Mathematics, Koç University, 34450 Istanbul, Turkey
2 Department of Mathematics, King’s College London, London, WC2R 2LS, United Kingdom
@article{GT_2017_21_6_a3,
     author = {Etg\"u, Tolga and Lekili, Yank{\i}},
     title = {Koszul duality patterns in {Floer} theory},
     journal = {Geometry & topology},
     pages = {3313--3389},
     publisher = {mathdoc},
     volume = {21},
     number = {6},
     year = {2017},
     doi = {10.2140/gt.2017.21.3313},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2017.21.3313/}
}
TY  - JOUR
AU  - Etgü, Tolga
AU  - Lekili, Yankı
TI  - Koszul duality patterns in Floer theory
JO  - Geometry & topology
PY  - 2017
SP  - 3313
EP  - 3389
VL  - 21
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2017.21.3313/
DO  - 10.2140/gt.2017.21.3313
ID  - GT_2017_21_6_a3
ER  - 
%0 Journal Article
%A Etgü, Tolga
%A Lekili, Yankı
%T Koszul duality patterns in Floer theory
%J Geometry & topology
%D 2017
%P 3313-3389
%V 21
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2017.21.3313/
%R 10.2140/gt.2017.21.3313
%F GT_2017_21_6_a3
Etgü, Tolga; Lekili, Yankı. Koszul duality patterns in Floer theory. Geometry & topology, Tome 21 (2017) no. 6, pp. 3313-3389. doi : 10.2140/gt.2017.21.3313. http://geodesic.mathdoc.fr/articles/10.2140/gt.2017.21.3313/

[1] M Abouzaid, A geometric criterion for generating the Fukaya category, Publ. Math. Inst. Hautes Études Sci. 112 (2010) 191 | DOI

[2] M Abouzaid, A cotangent fibre generates the Fukaya category, Adv. Math. 228 (2011) 894 | DOI

[3] M Abouzaid, A topological model for the Fukaya categories of plumbings, J. Differential Geom. 87 (2011) 1 | DOI

[4] M Abouzaid, On the wrapped Fukaya category and based loops, J. Symplectic Geom. 10 (2012) 27 | DOI

[5] M Abouzaid, Symplectic cohomology and Viterbo’s theorem, from: "Free loop spaces in geometry and topology" (editors J Latschev, A Oancea), IRMA Lect. Math. Theor. Phys. 24, Eur. Math. Soc. (2015) 271

[6] M Abouzaid, P Seidel, An open string analogue of Viterbo functoriality, Geom. Topol. 14 (2010) 627 | DOI

[7] M Abouzaid, I Smith, Exact Lagrangians in plumbings, Geom. Funct. Anal. 22 (2012) 785 | DOI

[8] J F Adams, On the cobar construction, Proc. Nat. Acad. Sci. USA 42 (1956) 409 | DOI

[9] M J Bardzell, A C Locateli, E N Marcos, On the Hochschild cohomology of truncated cycle algebras, Comm. Algebra 28 (2000) 1615 | DOI

[10] A Beilinson, V Ginzburg, W Soergel, Koszul duality patterns in representation theory, J. Amer. Math. Soc. 9 (1996) 473 | DOI

[11] M Van Den Bergh, A relation between Hochschild homology and cohomology for Gorenstein rings, Proc. Amer. Math. Soc. 126 (1998) 1345 | DOI

[12] M Van Den Bergh, Calabi–Yau algebras and superpotentials, Selecta Math. 21 (2015) 555 | DOI

[13] I N Bernšteĭn, I M Gel’Fand, V A Ponomarev, Coxeter functors and Gabriel’s theorem, Uspekhi Mat. Nauk 28 (1973) 19

[14] A J Blumberg, R L Cohen, C Teleman, Open-closed field theories, string topology, and Hochschild homology, from: "Alpine perspectives on algebraic topology" (editors C Ausoni, K Hess, J Scherer), Contemp. Math. 504, Amer. Math. Soc. (2009) 53 | DOI

[15] J M Boardman, Conditionally convergent spectral sequences, from: "Homotopy invariant algebraic structures" (editors J P Meyer, J Morava, W S Wilson), Contemp. Math. 239, Amer. Math. Soc. (1999) 49 | DOI

[16] F Bourgeois, T Ekholm, Y Eliashberg, Symplectic homology product via Legendrian surgery, Proc. Natl. Acad. Sci. USA 108 (2011) 8114 | DOI

[17] F Bourgeois, T Ekholm, Y Eliashberg, Effect of Legendrian surgery, Geom. Topol. 16 (2012) 301 | DOI

[18] S Brenner, M C R Butler, A D King, Periodic algebras which are almost Koszul, Algebr. Represent. Theory 5 (2002) 331 | DOI

[19] Y Chekanov, Differential algebra of Legendrian links, Invent. Math. 150 (2002) 441 | DOI

[20] R L Cohen, J D S Jones, A homotopy theoretic realization of string topology, Math. Ann. 324 (2002) 773 | DOI

[21] R L Cohen, J D S Jones, J Yan, The loop homology algebra of spheres and projective spaces, from: "Categorical decomposition techniques in algebraic topology" (editors G Arone, J Hubbuck, R Levi, M Weiss), Progr. Math. 215, Birkhäuser (2004) 77 | DOI

[22] P M Cohn, Free ideal rings and localization in general rings, 3, Cambridge Univ. Press (2006) | DOI

[23] W Crawley-Boevey, P Etingof, V Ginzburg, Noncommutative geometry and quiver algebras, Adv. Math. 209 (2007) 274 | DOI

[24] W Crawley-Boevey, P Shaw, Multiplicative preprojective algebras, middle convolution and the Deligne–Simpson problem, Adv. Math. 201 (2006) 180 | DOI

[25] P Deligne, P Griffiths, J Morgan, D Sullivan, Real homotopy theory of Kähler manifolds, Invent. Math. 29 (1975) 245 | DOI

[26] G Dimitroglou Rizell, Nontriviality results for the characteristic algebra of a DGA, Math. Proc. Cambridge Philos. Soc. 162 (2017) 419 | DOI

[27] T Ekholm, Y Lekili, Duality between Lagrangian and Legendrian invariants, preprint (2017)

[28] T Ekholm, L Ng, Legendrian contact homology in the boundary of a subcritical Weinstein 4–manifold, J. Differential Geom. 101 (2015) 67 | DOI

[29] Y Eliashberg, Topological characterization of Stein manifolds of dimension > 2, Internat. J. Math. 1 (1990) 29 | DOI

[30] Y Eliashberg, A Givental, H Hofer, Introduction to symplectic field theory, from: "Visions in mathematics: GAFA special volume" (editors N Alon, J Bourgain, A Connes, M Gromov, V Milman), Birkhäuser (2000) 560 | DOI

[31] Y Eliashberg, M Gromov, Convex symplectic manifolds, from: "Several complex variables and complex geometry, 2" (editors E Bedford, J P D’Angelo, R E Greene, S G Krantz), Proc. Sympos. Pure Math. 52, Amer. Math. Soc. (1991) 135 | DOI

[32] K Erdmann, T Holm, Twisted bimodules and Hochschild cohomology for self-injective algebras of class An, Forum Math. 11 (1999) 177 | DOI

[33] T Etgü, Y Lekili, Fukaya categories of plumbings and multiplicative preprojective algebras, preprint (2017)

[34] P Etingof, V Ginzburg, Noncommutative complete intersections and matrix integrals, Pure Appl. Math. Q. 3 (2007) 107 | DOI

[35] P Etingof, V Ginzburg, Noncommutative del Pezzo surfaces and Calabi–Yau algebras, J. Eur. Math. Soc. 12 (2010) 1371 | DOI

[36] Y Félix, L Menichi, J C Thomas, Gerstenhaber duality in Hochschild cohomology, J. Pure Appl. Algebra 199 (2005) 43 | DOI

[37] H Geiges, An introduction to contact topology, 109, Cambridge Univ. Press (2008) | DOI

[38] M Gerstenhaber, C W Wilkerson, On the deformation of rings and algebras, V : Deformation of differential graded algebras, from: "Higher homotopy structures in topology and mathematical physics" (editor J McCleary), Contemp. Math. 227, Amer. Math. Soc. (1999) 89 | DOI

[39] V Ginzburg, Calabi–Yau algebras, unpublished manuscript (2006)

[40] R E Gompf, Handlebody construction of Stein surfaces, Ann. of Math. 148 (1998) 619 | DOI

[41] S Hermes, Minimal model of Ginzburg algebras, J. Algebra 459 (2016) 389 | DOI

[42] T Holm, Hochschild cohomology of Brauer tree algebras, Comm. Algebra 26 (1998) 3625 | DOI

[43] R S Huerfano, M Khovanov, A category for the adjoint representation, J. Algebra 246 (2001) 514 | DOI

[44] J D S Jones, J Mccleary, Hochschild homology, cyclic homology, and the cobar construction, from: "Adams Memorial Symposium on Algebraic Topology, 1" (editors N Ray, G Walker), London Math. Soc. Lecture Note Ser. 175, Cambridge Univ. Press (1992) 53 | DOI

[45] T V Kadeishvili, The structure of the A(∞)–algebra, and the Hochschild and Harrison cohomologies, Trudy Tbiliss. Mat. Inst. Razmadze Akad. Nauk Gruzin. SSR 91 (1988) 19

[46] B Keller, Deriving DG categories, Ann. Sci. École Norm. Sup. 27 (1994) 63 | DOI

[47] B Keller, Derived invariance of higher structures on the Hochschild complex, unpublished manuscript (2003)

[48] M Kwon, O Van Koert, Brieskorn manifolds in contact topology, Bull. Lond. Math. Soc. 48 (2016) 173 | DOI

[49] Y Lekili, M Maydanskiy, The symplectic topology of some rational homology balls, Comment. Math. Helv. 89 (2014) 571 | DOI

[50] J L Loday, Cyclic homology, 301, Springer (1992) | DOI

[51] D M Lu, J H Palmieri, Q S Wu, J J Zhang, Koszul equivalences in A∞–algebras, New York J. Math. 14 (2008) 325

[52] R Martínez-Villa, Applications of Koszul algebras : the preprojective algebra, from: "Representation theory of algebras" (editors R Bautista, R Martínez-Villa, J A de la Peña), CMS Conf. Proc. 18, Amer. Math. Soc. (1996) 487

[53] L Menichi, String topology for spheres, Comment. Math. Helv. 84 (2009) 135 | DOI

[54] S B Priddy, Koszul resolutions, Trans. Amer. Math. Soc. 152 (1970) 39 | DOI

[55] J Rickard, Derived categories and stable equivalence, J. Pure Appl. Algebra 61 (1989) 303 | DOI

[56] T Schedler, Zeroth Hochschild homology of preprojective algebras over the integers, v1, (2007)

[57] T Schedler, Hochschild homology of preprojective algebras over the integers, Adv. Math. 299 (2016) 451 | DOI

[58] E Segal, The A∞ deformation theory of a point and the derived categories of local Calabi–Yaus, J. Algebra 320 (2008) 3232 | DOI

[59] P Seidel, Graded Lagrangian submanifolds, Bull. Soc. Math. France 128 (2000) 103 | DOI

[60] P Seidel, A biased view of symplectic cohomology, from: "Current developments in mathematics" (editors B Mazur, T Mrowka, W Schmid, R Stanley, S T Yau), Int. Press (2008) 211

[61] P Seidel, Fukaya categories and Picard–Lefschetz theory, Eur. Math. Soc. (2008) | DOI

[62] P Seidel, Symplectic homology as Hochschild homology, from: "Algebraic geometry, 1" (editors D Abramovich, A Bertram, L Katzarkov, R Pandharipande, M Thaddeus), Proc. Sympos. Pure Math., Amer. Math. Soc. (2009) 415 | DOI

[63] P Seidel, Lectures on categorical dynamics and symplectic topology, (2013)

[64] P Seidel, Abstract analogues of flux as symplectic invariants, 137, Soc. Math. Fr. (2014) 135 | DOI

[65] P Seidel, Fukaya A∞–structures associated to Lefschetz fibrations, II1 /2, preprint (2015)

[66] P Seidel, Picard–Lefschetz theory and dilating C∗–actions, J. Topol. 8 (2015) 1167 | DOI

[67] P Seidel, R Thomas, Braid group actions on derived categories of coherent sheaves, Duke Math. J. 108 (2001) 37 | DOI

[68] S F Siegel, S J Witherspoon, The Hochschild cohomology ring of a group algebra, Proc. London Math. Soc. 79 (1999) 131 | DOI

[69] I Smith, Quiver algebras as Fukaya categories, Geom. Topol. 19 (2015) 2557 | DOI

[70] C Viterbo, Functors and computations in Floer homology with applications, I, Geom. Funct. Anal. 9 (1999) 985 | DOI

[71] Y V Volkov, The Hochschild cohomology algebra for a series of self-injective algebras of tree type Dn, Algebra i Analiz 23 (2011) 99

[72] Y V Volkov, A I Generalov, Hochschild cohomology for self-injective algebras of tree class Dn, I, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. 343 (2007) 121, 273

[73] A Weinstein, Contact surgery and symplectic handlebodies, Hokkaido Math. J. 20 (1991) 241 | DOI

Cité par Sources :