Virtual fundamental classes for moduli spaces of sheaves on Calabi–Yau four-folds
Geometry & topology, Tome 21 (2017) no. 6, pp. 3231-3311.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

Let (X,ωX) be a separated, 2–shifted symplectic derived –scheme, in the sense of Pantev, Toën, Vezzosi and Vaquié (2013), of complex virtual dimension vdimX = n , and Xan the underlying complex analytic topological space. We prove that Xan can be given the structure of a derived smooth manifold Xdm, of real virtual dimension vdimXdm = n. This Xdm is not canonical, but is independent of choices up to bordisms fixing the underlying topological space Xan. There is a one-to-one correspondence between orientations on (X,ωX) and orientations on Xdm.

Because compact, oriented derived manifolds have virtual classes, this means that proper, oriented 2–shifted symplectic derived –schemes have virtual classes, in either homology or bordism. This is surprising, as conventional algebrogeometric virtual cycle methods fail in this case. Our virtual classes have half the expected dimension.

Now derived moduli schemes of coherent sheaves on a Calabi–Yau 4–fold are expected to be 2–shifted symplectic (this holds for stacks). We propose to use our virtual classes to define new Donaldson–Thomas style invariants “counting” (semi)stable coherent sheaves on Calabi–Yau 4–folds Y over , which should be unchanged under deformations of Y .

DOI : 10.2140/gt.2017.21.3231
Classification : 14A20, 14N35, 14J35, 14F05, 55N22, 53D30
Keywords: Calabi–Yau manifold, coherent sheaf, moduli space, virtual class, derived algebraic geometry

Borisov, Dennis 1 ; Joyce, Dominic 2

1 Mathematisches Institut, Georg-August-Universität Göttingen, Göttingen, Germany
2 The Mathematical Institute, University of Oxford, Oxford, United Kingdom
@article{GT_2017_21_6_a2,
     author = {Borisov, Dennis and Joyce, Dominic},
     title = {Virtual fundamental classes for moduli spaces of sheaves on {Calabi{\textendash}Yau} four-folds},
     journal = {Geometry & topology},
     pages = {3231--3311},
     publisher = {mathdoc},
     volume = {21},
     number = {6},
     year = {2017},
     doi = {10.2140/gt.2017.21.3231},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2017.21.3231/}
}
TY  - JOUR
AU  - Borisov, Dennis
AU  - Joyce, Dominic
TI  - Virtual fundamental classes for moduli spaces of sheaves on Calabi–Yau four-folds
JO  - Geometry & topology
PY  - 2017
SP  - 3231
EP  - 3311
VL  - 21
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2017.21.3231/
DO  - 10.2140/gt.2017.21.3231
ID  - GT_2017_21_6_a2
ER  - 
%0 Journal Article
%A Borisov, Dennis
%A Joyce, Dominic
%T Virtual fundamental classes for moduli spaces of sheaves on Calabi–Yau four-folds
%J Geometry & topology
%D 2017
%P 3231-3311
%V 21
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2017.21.3231/
%R 10.2140/gt.2017.21.3231
%F GT_2017_21_6_a2
Borisov, Dennis; Joyce, Dominic. Virtual fundamental classes for moduli spaces of sheaves on Calabi–Yau four-folds. Geometry & topology, Tome 21 (2017) no. 6, pp. 3231-3311. doi : 10.2140/gt.2017.21.3231. http://geodesic.mathdoc.fr/articles/10.2140/gt.2017.21.3231/

[1] K Behrend, B Fantechi, The intrinsic normal cone, Invent. Math. 128 (1997) 45 | DOI

[2] O Ben-Bassat, C Brav, V Bussi, D Joyce, A “Darboux theorem” for shifted symplectic structures on derived Artin stacks, with applications, Geom. Topol. 19 (2015) 1287 | DOI

[3] D Borisov, Derived manifolds and Kuranishi models, preprint (2012)

[4] D Borisov, J Noel, Simplicial approach to derived differential manifolds, preprint (2011)

[5] C Brav, V Bussi, D Dupont, D Joyce, B Szendrői, Symmetries and stabilization for sheaves of vanishing cycles, J. Singul. 11 (2015) 85 | DOI

[6] C Brav, V Bussi, D Joyce, A “Darboux theorem” for derived schemes with shifted symplectic structure, (2013)

[7] V Bussi, D Joyce, S Meinhardt, On motivic vanishing cycles of critical loci, preprint (2013)

[8] Y Cao, Donaldson–Thomas theory for Calabi–Yau four-folds, preprint (2013)

[9] Y Cao, N C Leung, Donaldson–Thomas theory for Calabi–Yau 4–folds, preprint (2014)

[10] Y Cao, N C Leung, Orientability for gauge theories on Calabi–Yau manifolds, Adv. Math. 314 (2017) 48 | DOI

[11] P E Conner, Differentiable periodic maps, 738, Springer (1979) | DOI

[12] S K Donaldson, P B Kronheimer, The geometry of four-manifolds, Oxford Univ. Press (1990)

[13] S K Donaldson, R P Thomas, Gauge theory in higher dimensions, from: "The geometric universe" (editors S A Huggett, L J Mason, K P Tod, S T Tsou, N M J Woodhouse), Oxford Univ. Press (1998) 31

[14] K Fukaya, Y G Oh, H Ohta, K Ono, Lagrangian intersection Floer theory : anomaly and obstruction, I–II, 46, Amer. Math. Soc. (2009)

[15] K Fukaya, K Ono, Arnold conjecture and Gromov–Witten invariant, Topology 38 (1999) 933 | DOI

[16] R Hartshorne, Algebraic geometry, 52, Springer (1977) | DOI

[17] D Joyce, Algebraic geometry over C∞–rings, preprint (2009)

[18] D Joyce, D-manifolds and d-orbifolds: a theory of derived differential geometry, book project (2012)

[19] D Joyce, D-manifolds, d-orbifolds and derived differential geometry: a detailed summary, preprint (2012)

[20] D Joyce, An introduction to d-manifolds and derived differential geometry, from: "Moduli spaces" (editors L Brambila-Paz, O García-Prada, P Newstead, R P Thomas), London Math. Soc. Lecture Note Ser. 411, Cambridge Univ. Press (2014) 230

[21] D Joyce, A new definition of Kuranishi space, preprint (2014)

[22] D Joyce, A classical model for derived critical loci, J. Differential Geom. 101 (2015) 289 | DOI

[23] D Joyce, Kuranishi spaces as a 2–category, preprint (2015)

[24] D Joyce, Kuranishi spaces and symplectic geometry, multiple-volume book project (2017)

[25] D Joyce, Y Song, A theory of generalized Donaldson–Thomas invariants, 1020, Amer. Math. Soc. (2012) | DOI

[26] M Kontsevich, Y Soibelman, Stability structures, motivic Donaldson–Thomas invariants and cluster transformations, (2008)

[27] J Lurie, Derived algebraic geometry, V: Structured spaces, preprint (2009)

[28] D Mcduff, Notes on Kuranishi atlases, preprint (2014)

[29] D Mcduff, K Wehrheim, Kuranishi atlases with trivial isotropy : the 2013 state of affairs, preprint (2012)

[30] J Milnor, On the Steenrod homology theory, from: "Collected papers of John Milnor, IV: Homotopy, homology and manifolds" (editor J McCleary), Amer. Math. Soc. (2009) 83

[31] T Pantev, B Toën, M Vaquié, G Vezzosi, Shifted symplectic structures, Publ. Math. Inst. Hautes Études Sci. 117 (2013) 271 | DOI

[32] D I Spivak, Derived smooth manifolds, Duke Math. J. 153 (2010) 55 | DOI

[33] R P Thomas, A holomorphic Casson invariant for Calabi–Yau 3–folds, and bundles on K3 fibrations, J. Differential Geom. 54 (2000) 367 | DOI

[34] B Toën, Higher and derived stacks: a global overview, from: "Algebraic geometry, 1" (editors D Abramovich, A Bertram, L Katzarkov, R Pandharipande, M Thaddeus), Proc. Sympos. Pure Math. 80, Amer. Math. Soc. (2009) 435 | DOI

[35] B Toën, Derived algebraic geometry, EMS Surv. Math. Sci. 1 (2014) 153 | DOI

[36] B Toën, G Vezzosi, Homotopical algebraic geometry, II : Geometric stacks and applications, Amer. Math. Soc. (2008) | DOI

Cité par Sources :