The chromatic splitting conjecture at n = p = 2
Geometry & topology, Tome 21 (2017) no. 6, pp. 3213-3230.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We show that the strongest form of Hopkins’ chromatic splitting conjecture, as stated by Hovey, cannot hold at chromatic level n = 2 at the prime p = 2. More precisely, for V (0), the mod 2 Moore spectrum, we prove that πkL1LK(2)V (0) is not zero when k is congruent to 3 modulo 8. We explain how this contradicts the decomposition of L1LK(2)S predicted by the chromatic splitting conjecture.

DOI : 10.2140/gt.2017.21.3213
Classification : 55P60, 55Q45
Keywords: K(2)-local, stable homotopy theory, Morava K-theory, chromatic assembly

Beaudry, Agnès 1

1 Department of Mathematics, University of Colorado, Boulder, CO, United States
@article{GT_2017_21_6_a1,
     author = {Beaudry, Agn\`es},
     title = {The chromatic splitting conjecture at n = p = 2},
     journal = {Geometry & topology},
     pages = {3213--3230},
     publisher = {mathdoc},
     volume = {21},
     number = {6},
     year = {2017},
     doi = {10.2140/gt.2017.21.3213},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2017.21.3213/}
}
TY  - JOUR
AU  - Beaudry, Agnès
TI  - The chromatic splitting conjecture at n = p = 2
JO  - Geometry & topology
PY  - 2017
SP  - 3213
EP  - 3230
VL  - 21
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2017.21.3213/
DO  - 10.2140/gt.2017.21.3213
ID  - GT_2017_21_6_a1
ER  - 
%0 Journal Article
%A Beaudry, Agnès
%T The chromatic splitting conjecture at n = p = 2
%J Geometry & topology
%D 2017
%P 3213-3230
%V 21
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2017.21.3213/
%R 10.2140/gt.2017.21.3213
%F GT_2017_21_6_a1
Beaudry, Agnès. The chromatic splitting conjecture at n = p = 2. Geometry & topology, Tome 21 (2017) no. 6, pp. 3213-3230. doi : 10.2140/gt.2017.21.3213. http://geodesic.mathdoc.fr/articles/10.2140/gt.2017.21.3213/

[1] T Barthel, D Heard, The E2–term of the K(n)–local En–Adams spectral sequence, Topology Appl. 206 (2016) 190 | DOI

[2] A Beaudry, The algebraic duality resolution at p = 2, Algebr. Geom. Topol. 15 (2015) 3653 | DOI

[3] A Beaudry, Towards the homotopy of the K(2)–local Moore spectrum at p = 2, Adv. Math. 306 (2017) 722 | DOI

[4] M Behrens, The homotopy groups of SE(2) at p ≥ 5 revisited, Adv. Math. 230 (2012) 458 | DOI

[5] M Behrens, D G Davis, The homotopy fixed point spectra of profinite Galois extensions, Trans. Amer. Math. Soc. 362 (2010) 4983 | DOI

[6] I Bobkova, Resolutions in the K(2)–local category at the prime 2, PhD thesis, Northwestern University (2014)

[7] E S Devinatz, A Lyndon–Hochschild–Serre spectral sequence for certain homotopy fixed point spectra, Trans. Amer. Math. Soc. 357 (2005) 129 | DOI

[8] E S Devinatz, M J Hopkins, Homotopy fixed point spectra for closed subgroups of the Morava stabilizer groups, Topology 43 (2004) 1 | DOI

[9] P G Goerss, H W Henn, M Mahowald, The rational homotopy of the K(2)–local sphere and the chromatic splitting conjecture for the prime 3 and level 2, Doc. Math. 19 (2014) 1271

[10] P Goerss, H W Henn, M Mahowald, C Rezk, A resolution of the K(2)–local sphere at the prime 3, Ann. of Math. 162 (2005) 777 | DOI

[11] H W Henn, On finite resolutions of K(n)–local spheres, from: "Elliptic cohomology" (editors H R Miller, D C Ravenel), London Math. Soc. Lecture Note Ser. 342, Cambridge Univ. Press (2007) 122 | DOI

[12] M Hovey, Bousfield localization functors and Hopkins’ chromatic splitting conjecture, from: "The Čech centennial" (editors M Cenkl, H Miller), Contemp. Math. 181, Amer. Math. Soc. (1995) 225 | DOI

[13] M Hovey, N P Strickland, Morava K–theories and localisation, 666, Amer. Math. Soc. (1999) | DOI

[14] M Mahowald, The image of J in the EHP sequence, Ann. of Math. 116 (1982) 65 | DOI

[15] H R Miller, On relations between Adams spectral sequences, with an application to the stable homotopy of a Moore space, J. Pure Appl. Algebra 20 (1981) 287 | DOI

[16] J Morava, Noetherian localisations of categories of cobordism comodules, Ann. of Math. 121 (1985) 1 | DOI

[17] D C Ravenel, The cohomology of the Morava stabilizer algebras, Math. Z. 152 (1977) 287 | DOI

[18] D C Ravenel, A novice’s guide to the Adams–Novikov spectral sequence, from: "Geometric applications of homotopy theory, II" (editors M G Barratt, M E Mahowald), Lecture Notes in Math. 658, Springer (1978) 404 | DOI

[19] D C Ravenel, Localization and periodicity in homotopy theory, from: "Homotopy theory" (editors E Rees, J D S Jones), London Math. Soc. Lecture Note Ser. 117, Cambridge Univ. Press (1987) 175

[20] C Rezk, Notes on the Hopkins–Miller theorem, from: "Homotopy theory via algebraic geometry and group representations" (editors M Mahowald, S Priddy), Contemp. Math. 220, Amer. Math. Soc. (1998) 313 | DOI

[21] K Shimomura, The Adams–Novikov E2–term for computing π∗(L2V (0)) at the prime 2, Topology Appl. 96 (1999) 133 | DOI

[22] K Shimomura, X Wang, The Adams–Novikov E2–term for π∗(L2S0) at the prime 2, Math. Z. 241 (2002) 271 | DOI

[23] K Shimomura, A Yabe, The homotopy groups π∗(L2S0), Topology 34 (1995) 261 | DOI

[24] J H Silverman, The arithmetic of elliptic curves, 106, Springer (1986) | DOI

Cité par Sources :