Independence of satellites of torus knots in the smooth concordance group
Geometry & topology, Tome 21 (2017) no. 6, pp. 3191-3211.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

The main goal of this article is to obtain a condition under which an infinite collection of satellite knots (with companion a positive torus knot and pattern similar to the Whitehead link) freely generates a subgroup of infinite rank in the smooth concordance group. This goal is attained by examining both the instanton moduli space over a 4–manifold with tubular ends and the corresponding Chern–Simons invariant of the adequate 3–dimensional portion of the 4–manifold. More specifically, the result is derived from Furuta’s criterion for the independence of Seifert fibred homology spheres in the homology cobordism group of oriented homology 3–spheres. Indeed, we first associate to the corresponding collection of 2–fold covers of the 3–sphere branched over the elements of and then introduce definite cobordisms from the aforementioned covers of the satellites to a number of Seifert fibered homology spheres. This allows us to apply Furuta’s criterion and thus obtain a condition that guarantees the independence of the family in the smooth concordance group.

DOI : 10.2140/gt.2017.21.3191
Classification : 57M25, 57N70, 58J28
Keywords: concordance, Whitehead double, instanton, satellite, Chern–Simons

Pinzón-Caicedo, Juanita 1

1 Department of Mathematics, University of Georgia, Athens, GA 30605, United States
@article{GT_2017_21_6_a0,
     author = {Pinz\'on-Caicedo, Juanita},
     title = {Independence of satellites of torus knots in the smooth concordance group},
     journal = {Geometry & topology},
     pages = {3191--3211},
     publisher = {mathdoc},
     volume = {21},
     number = {6},
     year = {2017},
     doi = {10.2140/gt.2017.21.3191},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2017.21.3191/}
}
TY  - JOUR
AU  - Pinzón-Caicedo, Juanita
TI  - Independence of satellites of torus knots in the smooth concordance group
JO  - Geometry & topology
PY  - 2017
SP  - 3191
EP  - 3211
VL  - 21
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2017.21.3191/
DO  - 10.2140/gt.2017.21.3191
ID  - GT_2017_21_6_a0
ER  - 
%0 Journal Article
%A Pinzón-Caicedo, Juanita
%T Independence of satellites of torus knots in the smooth concordance group
%J Geometry & topology
%D 2017
%P 3191-3211
%V 21
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2017.21.3191/
%R 10.2140/gt.2017.21.3191
%F GT_2017_21_6_a0
Pinzón-Caicedo, Juanita. Independence of satellites of torus knots in the smooth concordance group. Geometry & topology, Tome 21 (2017) no. 6, pp. 3191-3211. doi : 10.2140/gt.2017.21.3191. http://geodesic.mathdoc.fr/articles/10.2140/gt.2017.21.3191/

[1] A J Casson, C M Gordon, Cobordism of classical knots, from: "À la recherche de la topologie perdue" (editors L Guillou, A Marin), Progr. Math. 62, Birkhäuser (1986) 181

[2] T D Cochran, R E Gompf, Applications of Donaldson’s theorems to classical knot concordance, homology 3–spheres and property P, Topology 27 (1988) 495 | DOI

[3] S K Donaldson, Floer homology groups in Yang–Mills theory, 147, Cambridge Univ. Press (2002) | DOI

[4] R Fintushel, R J Stern, Pseudofree orbifolds, Ann. of Math. 122 (1985) 335 | DOI

[5] R Fintushel, R J Stern, Instanton homology of Seifert fibred homology three spheres, Proc. London Math. Soc. 61 (1990) 109 | DOI

[6] M H Freedman, The topology of four-dimensional manifolds, J. Differential Geom. 17 (1982) 357 | DOI

[7] M H Freedman, The disk theorem for four-dimensional manifolds, from: "Proceedings of the International Congress of Mathematicians, I" (editors Z Ciesielski, C Olech), PWN (1984) 647

[8] M H Freedman, F Quinn, Topology of 4–manifolds, 39, Princeton Univ. Press (1990)

[9] M Furuta, Homology cobordism group of homology 3–spheres, Invent. Math. 100 (1990) 339 | DOI

[10] R E Gompf, A I Stipsicz, 4–manifolds and Kirby calculus, 20, Amer. Math. Soc. (1999) | DOI

[11] M Hedden, P Kirk, Chern–Simons invariants, SO(3) instantons, and Z∕2 homology cobordism, from: "Chern–Simons gauge theory: 20 years after" (editors J r E Andersen, H U Boden, A Hahn, B Himpel), AMS/IP Stud. Adv. Math. 50, Amer. Math. Soc. (2011) 83

[12] M Hedden, P Kirk, Instantons, concordance, and Whitehead doubling, J. Differential Geom. 91 (2012) 281 | DOI

[13] W B R Lickorish, An introduction to knot theory, 175, Springer (1997) | DOI

[14] C Livingston, P Melvin, Abelian invariants of satellite knots, from: "Geometry and topology" (editors J Alexander, J Harer), Lecture Notes in Math. 1167, Springer (1985) 217 | DOI

[15] L Moser, Elementary surgery along a torus knot, Pacific J. Math. 38 (1971) 737 | DOI

[16] W D Neumann, D Zagier, A note on an invariant of Fintushel and Stern, from: "Geometry and topology" (editors J Alexander, J Harer), Lecture Notes in Math. 1167, Springer (1985) 241 | DOI

[17] H Seifert, On the homology invariants of knots, Quart. J. Math., Oxford Ser. 1 (1950) 23 | DOI

[18] C H Taubes, Gauge theory on asymptotically periodic 4–manifolds, J. Differential Geom. 25 (1987) 363 | DOI

[19] K K Uhlenbeck, Removable singularities in Yang–Mills fields, Comm. Math. Phys. 83 (1982) 11

Cité par Sources :