Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We give a new proof of Givental’s mirror theorem for toric manifolds using shift operators of equivariant parameters. The proof is almost tautological: it gives an A–model construction of the –function and the mirror map. It also works for noncompact or nonsemipositive toric manifolds.
Iritani, Hiroshi 1
@article{GT_2017_21_1_a6, author = {Iritani, Hiroshi}, title = {Shift operators and toric mirror theorem}, journal = {Geometry & topology}, pages = {315--343}, publisher = {mathdoc}, volume = {21}, number = {1}, year = {2017}, doi = {10.2140/gt.2017.21.315}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2017.21.315/} }
Iritani, Hiroshi. Shift operators and toric mirror theorem. Geometry & topology, Tome 21 (2017) no. 1, pp. 315-343. doi : 10.2140/gt.2017.21.315. http://geodesic.mathdoc.fr/articles/10.2140/gt.2017.21.315/
[1] The moment map and equivariant cohomology, Topology 23 (1984) 1 | DOI
, ,[2] Torus actions on symplectic manifolds, 93, Birkhäuser (2004) | DOI
,[3] Some theorems on actions of algebraic groups, Ann. of Math. 98 (1973) 480 | DOI
,[4] Quantum cohomology of the Springer resolution, Adv. Math. 227 (2011) 421 | DOI
, , ,[5] Gromov–Witten invariants of toric fibrations, Int. Math. Res. Not. 2014 (2014) 5437 | DOI
,[6] Orbifold quasimap theory, Math. Ann. 363 (2015) 777 | DOI
, , ,[7] A mirror theorem for toric stacks, Compos. Math. 151 (2015) 1878 | DOI
, , , ,[8] Quantum Riemann–Roch, Lefschetz and Serre, Ann. of Math. 165 (2007) 15 | DOI
, ,[9] The crepant transformation conjecture for toric complete intersections, preprint (2014)
, , ,[10] Mirror symmetry and algebraic geometry, 68, Amer. Math. Soc. (1999) | DOI
, ,[11] Toric varieties, 124, Amer. Math. Soc. (2011) | DOI
, , ,[12] Lectures on invariant theory, 296, Cambridge University Press (2003) | DOI
,[13] Elliptic Gromov–Witten invariants and the generalized mirror conjecture, from: "Integrable systems and algebraic geometry" (editors M H Saito, Y Shimizu, K Ueno), World Sci. Publ. (1998) 107
,[14] A mirror theorem for toric complete intersections, from: "Topological field theory, primitive forms and related topics" (editors M Kashiwara, A Matsuo, K Saito, I Satake), Progr. Math. 160, Birkhäuser (1998) 141 | DOI
,[15] Symplectic geometry of Frobenius structures, from: "Frobenius manifolds: quantum cohomology and singularities" (editors C Hertling, M Marcolli), Aspects Math. E36, Friedr. Vieweg (2004) 91 | DOI
,[16] Seidel elements and mirror transformations, Selecta Math. 18 (2012) 557 | DOI
, ,[17] Localization of virtual classes, Invent. Math. 135 (1999) 487 | DOI
, ,[18] Cohomology of large semiprojective hyperkähler varieties, from: "De la géométrie algébrique aux formes automorphes, II" (editors J B Bost, P Boyer, A Genestier, L Lafforgue, S Lysenko, S Morel, B C Ngo), Astérisque 370, Société Mathématique de France (2015) 113
, ,[19] Quantum D–modules and generalized mirror transformations, Topology 47 (2008) 225 | DOI
,[20] An integral structure in quantum cohomology and mirror symmetry for toric orbifolds, Adv. Math. 222 (2009) 1016 | DOI
,[21] A mirror construction for the big equivariant quantum cohomology of toric manifolds, Math. Ann. (2016) | DOI
,[22] Hodge theoretic aspects of mirror symmetry, from: "From Hodge theory to integrability and TQFT tt*-geometry" (editors R Y Donagi, K Wendland), Proc. Sympos. Pure Math. 78, Amer. Math. Soc. (2008) 87 | DOI
, , ,[23] Cohomology of quotients in symplectic and algebraic geometry, 31, Princeton University Press (1984) | DOI
,[24] Mirror principle, III, Asian J. Math. 3 (1999) 771 | DOI
, , ,[25] Quantum groups and quantum cohomology, preprint (2012)
, ,[26] Topological properties of Hamiltonian circle actions, Int. Math. Res. Pap. (2006) 1 | DOI
, ,[27] Lectures on Hilbert schemes of points on surfaces, 18, Amer. Math. Soc. (1999) | DOI
,[28] Convex bodies and algebraic geometry: an introduction to the theory of toric varieties, 15, Springer (1988)
,[29] The quantum differential equation of the Hilbert scheme of points in the plane, Transform. Groups 15 (2010) 965 | DOI
, ,[30] Rational curves on hypersurfaces (after A Givental), from: "Séminaire Bourbaki, Vol. 1997/98 (Exposé 848)", Astérisque 252, Société Mathématique de France (1998) 307
,[31] π1 of symplectic automorphism groups and invertibles in quantum homology rings, Geom. Funct. Anal. 7 (1997) 1046 | DOI
,Cité par Sources :