Shift operators and toric mirror theorem
Geometry & topology, Tome 21 (2017) no. 1, pp. 315-343.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We give a new proof of Givental’s mirror theorem for toric manifolds using shift operators of equivariant parameters. The proof is almost tautological: it gives an A–model construction of the I–function and the mirror map. It also works for noncompact or nonsemipositive toric manifolds.

DOI : 10.2140/gt.2017.21.315
Classification : 14N35, 53D45, 14J33, 53D37
Keywords: mirror symmetry, Gromov–Witten invariants, quantum cohomology, torus action, toric variety, Givental cone, Seidel representation, shift operator

Iritani, Hiroshi 1

1 Department of Mathematics, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan
@article{GT_2017_21_1_a6,
     author = {Iritani, Hiroshi},
     title = {Shift operators and toric mirror theorem},
     journal = {Geometry & topology},
     pages = {315--343},
     publisher = {mathdoc},
     volume = {21},
     number = {1},
     year = {2017},
     doi = {10.2140/gt.2017.21.315},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2017.21.315/}
}
TY  - JOUR
AU  - Iritani, Hiroshi
TI  - Shift operators and toric mirror theorem
JO  - Geometry & topology
PY  - 2017
SP  - 315
EP  - 343
VL  - 21
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2017.21.315/
DO  - 10.2140/gt.2017.21.315
ID  - GT_2017_21_1_a6
ER  - 
%0 Journal Article
%A Iritani, Hiroshi
%T Shift operators and toric mirror theorem
%J Geometry & topology
%D 2017
%P 315-343
%V 21
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2017.21.315/
%R 10.2140/gt.2017.21.315
%F GT_2017_21_1_a6
Iritani, Hiroshi. Shift operators and toric mirror theorem. Geometry & topology, Tome 21 (2017) no. 1, pp. 315-343. doi : 10.2140/gt.2017.21.315. http://geodesic.mathdoc.fr/articles/10.2140/gt.2017.21.315/

[1] M F Atiyah, R Bott, The moment map and equivariant cohomology, Topology 23 (1984) 1 | DOI

[2] M Audin, Torus actions on symplectic manifolds, 93, Birkhäuser (2004) | DOI

[3] A Białynicki-Birula, Some theorems on actions of algebraic groups, Ann. of Math. 98 (1973) 480 | DOI

[4] A Braverman, D Maulik, A Okounkov, Quantum cohomology of the Springer resolution, Adv. Math. 227 (2011) 421 | DOI

[5] J Brown, Gromov–Witten invariants of toric fibrations, Int. Math. Res. Not. 2014 (2014) 5437 | DOI

[6] D Cheong, I Ciocan-Fontanine, B Kim, Orbifold quasimap theory, Math. Ann. 363 (2015) 777 | DOI

[7] T Coates, A Corti, H Iritani, H H Tseng, A mirror theorem for toric stacks, Compos. Math. 151 (2015) 1878 | DOI

[8] T Coates, A Givental, Quantum Riemann–Roch, Lefschetz and Serre, Ann. of Math. 165 (2007) 15 | DOI

[9] T Coates, H Iritani, Y Jiang, The crepant transformation conjecture for toric complete intersections, preprint (2014)

[10] D A Cox, S Katz, Mirror symmetry and algebraic geometry, 68, Amer. Math. Soc. (1999) | DOI

[11] D A Cox, J B Little, H K Schenck, Toric varieties, 124, Amer. Math. Soc. (2011) | DOI

[12] I Dolgachev, Lectures on invariant theory, 296, Cambridge University Press (2003) | DOI

[13] A Givental, Elliptic Gromov–Witten invariants and the generalized mirror conjecture, from: "Integrable systems and algebraic geometry" (editors M H Saito, Y Shimizu, K Ueno), World Sci. Publ. (1998) 107

[14] A Givental, A mirror theorem for toric complete intersections, from: "Topological field theory, primitive forms and related topics" (editors M Kashiwara, A Matsuo, K Saito, I Satake), Progr. Math. 160, Birkhäuser (1998) 141 | DOI

[15] A Givental, Symplectic geometry of Frobenius structures, from: "Frobenius manifolds: quantum cohomology and singularities" (editors C Hertling, M Marcolli), Aspects Math. E36, Friedr. Vieweg (2004) 91 | DOI

[16] E González, H Iritani, Seidel elements and mirror transformations, Selecta Math. 18 (2012) 557 | DOI

[17] T Graber, R Pandharipande, Localization of virtual classes, Invent. Math. 135 (1999) 487 | DOI

[18] T Hausel, F Rodriguez Villegas, Cohomology of large semiprojective hyperkähler varieties, from: "De la géométrie algébrique aux formes automorphes, II" (editors J B Bost, P Boyer, A Genestier, L Lafforgue, S Lysenko, S Morel, B C Ngo), Astérisque 370, Société Mathématique de France (2015) 113

[19] H Iritani, Quantum D–modules and generalized mirror transformations, Topology 47 (2008) 225 | DOI

[20] H Iritani, An integral structure in quantum cohomology and mirror symmetry for toric orbifolds, Adv. Math. 222 (2009) 1016 | DOI

[21] H Iritani, A mirror construction for the big equivariant quantum cohomology of toric manifolds, Math. Ann. (2016) | DOI

[22] L Katzarkov, M Kontsevich, T Pantev, Hodge theoretic aspects of mirror symmetry, from: "From Hodge theory to integrability and TQFT tt*-geometry" (editors R Y Donagi, K Wendland), Proc. Sympos. Pure Math. 78, Amer. Math. Soc. (2008) 87 | DOI

[23] F C Kirwan, Cohomology of quotients in symplectic and algebraic geometry, 31, Princeton University Press (1984) | DOI

[24] B H Lian, K Liu, S T Yau, Mirror principle, III, Asian J. Math. 3 (1999) 771 | DOI

[25] D Maulik, A Okounkov, Quantum groups and quantum cohomology, preprint (2012)

[26] D Mcduff, S Tolman, Topological properties of Hamiltonian circle actions, Int. Math. Res. Pap. (2006) 1 | DOI

[27] H Nakajima, Lectures on Hilbert schemes of points on surfaces, 18, Amer. Math. Soc. (1999) | DOI

[28] T Oda, Convex bodies and algebraic geometry: an introduction to the theory of toric varieties, 15, Springer (1988)

[29] A Okounkov, R Pandharipande, The quantum differential equation of the Hilbert scheme of points in the plane, Transform. Groups 15 (2010) 965 | DOI

[30] R Pandharipande, Rational curves on hypersurfaces (after A Givental), from: "Séminaire Bourbaki, Vol. 1997/98 (Exposé 848)", Astérisque 252, Société Mathématique de France (1998) 307

[31] P Seidel, π1 of symplectic automorphism groups and invertibles in quantum homology rings, Geom. Funct. Anal. 7 (1997) 1046 | DOI

Cité par Sources :