Kato–Nakayama spaces, infinite root stacks and the profinite homotopy type of log schemes
Geometry & topology, Tome 21 (2017) no. 5, pp. 3093-3158.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

For a log scheme locally of finite type over , a natural candidate for its profinite homotopy type is the profinite completion of its Kato–Nakayama space. Alternatively, one may consider the profinite homotopy type of the underlying topological stack of its infinite root stack. Finally, for a log scheme not necessarily over , another natural candidate is the profinite étale homotopy type of its infinite root stack. We prove that, for a fine saturated log scheme locally of finite type over , these three notions agree. In particular, we construct a comparison map from the Kato–Nakayama space to the underlying topological stack of the infinite root stack, and prove that it induces an equivalence on profinite completions. In light of these results, we define the profinite homotopy type of a general fine saturated log scheme as the profinite étale homotopy type of its infinite root stack.

DOI : 10.2140/gt.2017.21.3093
Classification : 14F35, 55U35, 55P60
Keywords: log scheme, Kato–Nakayama space, root stack, profinite spaces, infinity category, étale homotopy type, topological stack

Carchedi, David 1 ; Scherotzke, Sarah 2 ; Sibilla, Nicolò 3 ; Talpo, Mattia 4

1 Department of Mathematical Sciences, George Mason University, Fairfax, VA 22030, United States
2 Mathematisches Institut, University of Bonn, Endenicher Allee 60, D-53115 Bonn, Germany
3 School of Mathematics, Statistics and Actuarial Sciences, University of Kent, Canterbury, CT2 7FS, United Kingdom
4 Department of Mathematics, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
@article{GT_2017_21_5_a11,
     author = {Carchedi, David and Scherotzke, Sarah and Sibilla, Nicol\`o and Talpo, Mattia},
     title = {Kato{\textendash}Nakayama spaces, infinite root stacks and the profinite homotopy type of log schemes},
     journal = {Geometry & topology},
     pages = {3093--3158},
     publisher = {mathdoc},
     volume = {21},
     number = {5},
     year = {2017},
     doi = {10.2140/gt.2017.21.3093},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2017.21.3093/}
}
TY  - JOUR
AU  - Carchedi, David
AU  - Scherotzke, Sarah
AU  - Sibilla, Nicolò
AU  - Talpo, Mattia
TI  - Kato–Nakayama spaces, infinite root stacks and the profinite homotopy type of log schemes
JO  - Geometry & topology
PY  - 2017
SP  - 3093
EP  - 3158
VL  - 21
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2017.21.3093/
DO  - 10.2140/gt.2017.21.3093
ID  - GT_2017_21_5_a11
ER  - 
%0 Journal Article
%A Carchedi, David
%A Scherotzke, Sarah
%A Sibilla, Nicolò
%A Talpo, Mattia
%T Kato–Nakayama spaces, infinite root stacks and the profinite homotopy type of log schemes
%J Geometry & topology
%D 2017
%P 3093-3158
%V 21
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2017.21.3093/
%R 10.2140/gt.2017.21.3093
%F GT_2017_21_5_a11
Carchedi, David; Scherotzke, Sarah; Sibilla, Nicolò; Talpo, Mattia. Kato–Nakayama spaces, infinite root stacks and the profinite homotopy type of log schemes. Geometry & topology, Tome 21 (2017) no. 5, pp. 3093-3158. doi : 10.2140/gt.2017.21.3093. http://geodesic.mathdoc.fr/articles/10.2140/gt.2017.21.3093/

[1] D Abramovich, Q Chen, D Gillam, Y Huang, M Olsson, M Satriano, S Sun, Logarithmic geometry and moduli, from: "Handbook of moduli, I" (editors G Farkas, I Morrison), Adv. Lect. Math. 24, International Press (2013) 1

[2] M Artin, Algebraization of formal moduli, II : Existence of modifications, Ann. of Math. 91 (1970) 88 | DOI

[3] M Artin, A Grothendieck, J L Verdier, Théorie des topos et cohomologie étale des schémas, Tome 1 : Théorie des topos, Exposés I–IV (SGA 41 ), 269, Springer (1972)

[4] M Artin, A Grothendieck, J L Verdier, Théorie des topos et cohomologie étale des schémas, Tome 3 : Exposés IX–XIX (SGA 43 ), 305, Springer (1973)

[5] M Artin, B Mazur, Etale homotopy, 100, Springer (1969) | DOI

[6] I Barnea, Y Harpaz, G Horel, Pro-categories in homotopy theory, Algebr. Geom. Topol. 17 (2017) 567 | DOI

[7] P Belmans, A J De Jong, Others, The Stacks project, http://stacks.math.columbia.edu, electronic reference (2005–)

[8] J Bochnak, M Coste, M F Roy, Real algebraic geometry, 36, Springer (1998) | DOI

[9] N Borne, A Vistoli, Parabolic sheaves on logarithmic schemes, Adv. Math. 231 (2012) 1327 | DOI

[10] D Carchedi, Higher orbifolds and Deligne–Mumford stacks as structured infinity topoi, preprint (2013)

[11] D Carchedi, On the étale homotopy type of higher stacks, preprint (2015)

[12] D Carchedi, On the homotopy type of higher orbifolds and Haefliger classifying spaces, Adv. Math. 294 (2016) 756 | DOI

[13] B Conrad, Cohomological descent, preprint (2004)

[14] T Coyne, B Noohi, Singular chains on topological stacks, I, Adv. Math. 303 (2016) 1190 | DOI

[15] D Dugger, D C Isaksen, Topological hypercovers and A1–realizations, Math. Z. 246 (2004) 667 | DOI

[16] E M Friedlander, Fibrations in etale homotopy theory, Inst. Hautes Études Sci. Publ. Math. 42 (1973) 5

[17] E M Friedlander, Étale homotopy of simplicial schemes, 104, Princeton Univ. Press (1982)

[18] M Groth, A short course on ∞–categories, preprint (2010)

[19] K Hagihara, Structure theorem of Kummer étale K–group, –Theory 29 (2003) 75 | DOI

[20] A Henriques, D Gepner, Homotopy theory of orbispaces, preprint (2007)

[21] K R Hofmann, Triangulation of locally semi-algebraic spaces, PhD thesis, University of Michigan (2009)

[22] M Hoyois, Higher Galois theory, preprint (2015)

[23] L Illusie, K Kato, C Nakayama, Quasi-unipotent logarithmic Riemann–Hilbert correspondences, J. Math. Sci. Univ. Tokyo 12 (2005) 1

[24] L Illusie, C Nakayama, T Tsuji, On log flat descent, Proc. Japan Acad. Ser. A Math. Sci. 89 (2013) 1 | DOI

[25] D C Isaksen, A model structure on the category of pro-simplicial sets, Trans. Amer. Math. Soc. 353 (2001) 2805 | DOI

[26] J F Jardine, Simplicial presheaves, J. Pure Appl. Algebra 47 (1987) 35 | DOI

[27] K Kato, Logarithmic structures of Fontaine–Illusie, from: "Algebraic analysis, geometry, and number theory" (editor J I Igusa), Johns Hopkins Univ. Press (1989) 191

[28] K Kato, C Nakayama, Log Betti cohomology, log étale cohomology, and log de Rham cohomology of log schemes over C, Kodai Math. J. 22 (1999) 161 | DOI

[29] A Kock, I Moerdijk, Presentations of étendues, Cahiers Topologie Géom. Différentielle Catég. 32 (1991) 145

[30] S Lojasiewicz, Triangulation of semi-analytic sets, Ann. Scuola Norm. Sup. Pisa 18 (1964) 449

[31] J Lurie, Higher topos theory, 170, Princeton Univ. Press (2009) | DOI

[32] J Lurie, Derived algebraic geometry, XIII : Rational and p–adic homotopy theory, preprint (2011)

[33] A Mathew, V Stojanoska, Fibers of partial totalizations of a pointed cosimplicial space, Proc. Amer. Math. Soc. 144 (2016) 445 | DOI

[34] J P Mccammond, A general small cancellation theory, Internat. J. Algebra Comput. 10 (2000) 1 | DOI

[35] W Nizioł, K–theory of log-schemes, I, Doc. Math. 13 (2008) 505

[36] B Noohi, Foundations of topological stacks, I, preprint (2005)

[37] B Noohi, Homotopy types of topological stacks, Adv. Math. 230 (2012) 2014 | DOI

[38] A Ogus, Lectures on logarithmic algebraic geometry, lecture notes (2006)

[39] M C Olsson, Logarithmic geometry and algebraic stacks, Ann. Sci. École Norm. Sup. 36 (2003) 747 | DOI

[40] G Quick, Profinite homotopy theory, Doc. Math. 13 (2008) 585

[41] G Quick, Some remarks on profinite completion of spaces, from: "Galois–Teichmüller theory and arithmetic geometry" (editors H Nakamura, F Pop, L Schneps, A Tamagawa), Adv. Stud. Pure Math. 63, Math. Soc. Japan (2012) 413

[42] D G Quillen, Some remarks on etale homotopy theory and a conjecture of Adams, Topology 7 (1968) 111 | DOI

[43] H Ruddat, N Sibilla, D Treumann, E Zaslow, Skeleta of affine hypersurfaces, Geom. Topol. 18 (2014) 1343 | DOI

[44] U Schreiber, Differential cohomology in a cohesive infinity-topos, preprint (2013)

[45] J P Serre, Cohomologie galoisienne, 5, Springer (1965) | DOI

[46] M Shiota, Whitney triangulations of semialgebraic sets, Ann. Polon. Math. 87 (2005) 237 | DOI

[47] D Sullivan, Genetics of homotopy theory and the Adams conjecture, Ann. of Math. 100 (1974) 1 | DOI

[48] M Talpo, A Vistoli, Infinite root stacks and quasi-coherent sheaves on logarithmic schemes, preprint (2014)

[49] B Toën, M Vaquié, Algébrisation des variétés analytiques complexes et catégories dérivées, Math. Ann. 342 (2008) 789 | DOI

Cité par Sources :