Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We describe the geometry of the –dimensional Fano manifold parametrizing –planes in a smooth complete intersection of two quadric hypersurfaces in the complex projective space for . We show that there are exactly distinct isomorphisms in codimension one between and the blow-up of at general points, parametrized by the distinct –planes contained in , and describe these rational maps explicitly. We also describe the cones of nef, movable and effective divisors of , as well as their dual cones of curves. Finally, we determine the automorphism group of .
These results generalize to arbitrary even dimension the classical description of quartic del Pezzo surfaces ().
Araujo, Carolina 1 ; Casagrande, Cinzia 2
@article{GT_2017_21_5_a9, author = {Araujo, Carolina and Casagrande, Cinzia}, title = {On the {Fano} variety of linear spaces contained in two odd-dimensional quadrics}, journal = {Geometry & topology}, pages = {3009--3045}, publisher = {mathdoc}, volume = {21}, number = {5}, year = {2017}, doi = {10.2140/gt.2017.21.3009}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2017.21.3009/} }
TY - JOUR AU - Araujo, Carolina AU - Casagrande, Cinzia TI - On the Fano variety of linear spaces contained in two odd-dimensional quadrics JO - Geometry & topology PY - 2017 SP - 3009 EP - 3045 VL - 21 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2017.21.3009/ DO - 10.2140/gt.2017.21.3009 ID - GT_2017_21_5_a9 ER -
%0 Journal Article %A Araujo, Carolina %A Casagrande, Cinzia %T On the Fano variety of linear spaces contained in two odd-dimensional quadrics %J Geometry & topology %D 2017 %P 3009-3045 %V 21 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.2140/gt.2017.21.3009/ %R 10.2140/gt.2017.21.3009 %F GT_2017_21_5_a9
Araujo, Carolina; Casagrande, Cinzia. On the Fano variety of linear spaces contained in two odd-dimensional quadrics. Geometry & topology, Tome 21 (2017) no. 5, pp. 3009-3045. doi : 10.2140/gt.2017.21.3009. http://geodesic.mathdoc.fr/articles/10.2140/gt.2017.21.3009/
[1] Explicit log Fano structures on blow-ups of projective spaces, Proc. Lond. Math. Soc. 113 (2016) 445 | DOI
, ,[2] Some elementary examples of unirational varieties which are not rational, Proc. London Math. Soc. 25 (1972) 75 | DOI
, ,[3] Parabolic bundles, elliptic surfaces and SU(2)–representation spaces of genus zero Fuchsian groups, Math. Ann. 290 (1991) 509 | DOI
,[4] On moduli spaces of parabolic vector bundles of rank 2 over CP1, Michigan Math. J. 59 (2010) 467 | DOI
, , ,[5] Deforming varieties of k–planes of projective complete intersections, Pacific J. Math. 143 (1990) 25 | DOI
,[6] Homogeneous vector bundles and families of Calabi–Yau threefolds, II, from: "Several complex variables and complex geometry, II" (editors E Bedford, J P D’Angelo, R E Greene, S G Krantz), Proc. Sympos. Pure Math. 52, Amer. Math. Soc. (1991) 83
,[7] On the effective cone of Pn blown-up at n + 3 points, Exp. Math. 25 (2016) 452 | DOI
, , ,[8] Rank 2 quasiparabolic vector bundles on P1 and the variety of linear subspaces contained in two odd-dimensional quadrics, Math. Z. 280 (2015) 981 | DOI
,[9] Hilbert’s 14th problem and Cox rings, Compos. Math. 142 (2006) 1479 | DOI
, ,[10] Weyl groups and Cremona transformations, from: "Singularities, I" (editor P Orlik), Proc. Sympos. Pure Math. 40, Amer. Math. Soc. (1983) 283
,[11] On certain families of elliptic curves in projective space, Ann. Mat. Pura Appl. 183 (2004) 317 | DOI
,[12] Classical algebraic geometry: a modern view, Cambridge University Press (2012) | DOI
,[13] Regular pairs of quadratic forms on odd-dimensional spaces in characteristic 2, preprint (2015)
, ,[14] Point sets in projective spaces and theta functions, 165, Soc. Math. France (1988)
, ,[15] Homology representations arising from the half cube, Adv. Math. 222 (2009) 216 | DOI
,[16] Combinatorics of minuscule representations, 199, Cambridge University Press (2013)
,[17] Algebraic geometry: a first course, 133, Springer (1992) | DOI
,[18] Mori dream spaces and GIT, Michigan Math. J. 48 (2000) 331 | DOI
, ,[19] Introduction to Lie algebras and representation theory, 9, Springer (1972) | DOI
,[20] A Noether–Lefschetz theorem for varieties of r–planes in complete intersections, Nagoya Math. J. 206 (2012) 39 | DOI
,[21] Counterexample to Hilbert’s fourteenth problem for the 3–dimensional additive group, preprint (2001)
,[22] An introduction to invariants and moduli, 81, Cambridge University Press (2003)
,[23] Finite generation of the Nagata invariant rings in A–D–E cases, preprint (2005)
,[24] On images of Mori dream spaces, Math. Ann. 364 (2016) 1315 | DOI
,[25] The complete intersection of two or more quadrics, PhD thesis, University of Cambridge (1972)
,[26] Torsion cohomology classes and algebraic cycles on complex projective manifolds, Adv. Math. 198 (2005) 107 | DOI
, ,Cité par Sources :