On the Fano variety of linear spaces contained in two odd-dimensional quadrics
Geometry & topology, Tome 21 (2017) no. 5, pp. 3009-3045.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We describe the geometry of the 2m–dimensional Fano manifold G parametrizing (m1)–planes in a smooth complete intersection Z of two quadric hypersurfaces in the complex projective space 2m+2 for m 1. We show that there are exactly 22m+2 distinct isomorphisms in codimension one between G and the blow-up of 2m at 2m + 3 general points, parametrized by the 22m+2 distinct m–planes contained in Z, and describe these rational maps explicitly. We also describe the cones of nef, movable and effective divisors of G, as well as their dual cones of curves. Finally, we determine the automorphism group of G.

These results generalize to arbitrary even dimension the classical description of quartic del Pezzo surfaces (m = 1).

DOI : 10.2140/gt.2017.21.3009
Classification : 14E30, 14J45, 14M15, 14N20, 14E05
Keywords: Fano varieties, intersection of two quadrics, blow-up of projective spaces, birational geometry

Araujo, Carolina 1 ; Casagrande, Cinzia 2

1 Instituto de Matemática Pura e Aplicada, 22460-320 Rio de Janeiro, Brazil
2 Dipartimento di Matematica, Università di Torino, I-10123 Torino, Italy
@article{GT_2017_21_5_a9,
     author = {Araujo, Carolina and Casagrande, Cinzia},
     title = {On the {Fano} variety of linear spaces contained in two odd-dimensional quadrics},
     journal = {Geometry & topology},
     pages = {3009--3045},
     publisher = {mathdoc},
     volume = {21},
     number = {5},
     year = {2017},
     doi = {10.2140/gt.2017.21.3009},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2017.21.3009/}
}
TY  - JOUR
AU  - Araujo, Carolina
AU  - Casagrande, Cinzia
TI  - On the Fano variety of linear spaces contained in two odd-dimensional quadrics
JO  - Geometry & topology
PY  - 2017
SP  - 3009
EP  - 3045
VL  - 21
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2017.21.3009/
DO  - 10.2140/gt.2017.21.3009
ID  - GT_2017_21_5_a9
ER  - 
%0 Journal Article
%A Araujo, Carolina
%A Casagrande, Cinzia
%T On the Fano variety of linear spaces contained in two odd-dimensional quadrics
%J Geometry & topology
%D 2017
%P 3009-3045
%V 21
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2017.21.3009/
%R 10.2140/gt.2017.21.3009
%F GT_2017_21_5_a9
Araujo, Carolina; Casagrande, Cinzia. On the Fano variety of linear spaces contained in two odd-dimensional quadrics. Geometry & topology, Tome 21 (2017) no. 5, pp. 3009-3045. doi : 10.2140/gt.2017.21.3009. http://geodesic.mathdoc.fr/articles/10.2140/gt.2017.21.3009/

[1] C Araujo, A Massarenti, Explicit log Fano structures on blow-ups of projective spaces, Proc. Lond. Math. Soc. 113 (2016) 445 | DOI

[2] M Artin, D Mumford, Some elementary examples of unirational varieties which are not rational, Proc. London Math. Soc. 25 (1972) 75 | DOI

[3] S Bauer, Parabolic bundles, elliptic surfaces and SU(2)–representation spaces of genus zero Fuchsian groups, Math. Ann. 290 (1991) 509 | DOI

[4] I Biswas, Y I Holla, C Kumar, On moduli spaces of parabolic vector bundles of rank 2 over CP1, Michigan Math. J. 59 (2010) 467 | DOI

[5] C Borcea, Deforming varieties of k–planes of projective complete intersections, Pacific J. Math. 143 (1990) 25 | DOI

[6] C Borcea, Homogeneous vector bundles and families of Calabi–Yau threefolds, II, from: "Several complex variables and complex geometry, II" (editors E Bedford, J P D’Angelo, R E Greene, S G Krantz), Proc. Sympos. Pure Math. 52, Amer. Math. Soc. (1991) 83

[7] M C Brambilla, O Dumitrescu, E Postinghel, On the effective cone of Pn blown-up at n + 3 points, Exp. Math. 25 (2016) 452 | DOI

[8] C Casagrande, Rank 2 quasiparabolic vector bundles on P1 and the variety of linear subspaces contained in two odd-dimensional quadrics, Math. Z. 280 (2015) 981 | DOI

[9] A M Castravet, J Tevelev, Hilbert’s 14th problem and Cox rings, Compos. Math. 142 (2006) 1479 | DOI

[10] I V Dolgachev, Weyl groups and Cremona transformations, from: "Singularities, I" (editor P Orlik), Proc. Sympos. Pure Math. 40, Amer. Math. Soc. (1983) 283

[11] I V Dolgachev, On certain families of elliptic curves in projective space, Ann. Mat. Pura Appl. 183 (2004) 317 | DOI

[12] I V Dolgachev, Classical algebraic geometry: a modern view, Cambridge University Press (2012) | DOI

[13] I Dolgachev, A Duncan, Regular pairs of quadratic forms on odd-dimensional spaces in characteristic 2, preprint (2015)

[14] I Dolgachev, D Ortland, Point sets in projective spaces and theta functions, 165, Soc. Math. France (1988)

[15] R M Green, Homology representations arising from the half cube, Adv. Math. 222 (2009) 216 | DOI

[16] R M Green, Combinatorics of minuscule representations, 199, Cambridge University Press (2013)

[17] J Harris, Algebraic geometry: a first course, 133, Springer (1992) | DOI

[18] Y Hu, S Keel, Mori dream spaces and GIT, Michigan Math. J. 48 (2000) 331 | DOI

[19] J E Humphreys, Introduction to Lie algebras and representation theory, 9, Springer (1972) | DOI

[20] Z Jiang, A Noether–Lefschetz theorem for varieties of r–planes in complete intersections, Nagoya Math. J. 206 (2012) 39 | DOI

[21] S Mukai, Counterexample to Hilbert’s fourteenth problem for the 3–dimensional additive group, preprint (2001)

[22] S Mukai, An introduction to invariants and moduli, 81, Cambridge University Press (2003)

[23] S Mukai, Finite generation of the Nagata invariant rings in A–D–E cases, preprint (2005)

[24] S Okawa, On images of Mori dream spaces, Math. Ann. 364 (2016) 1315 | DOI

[25] M Reid, The complete intersection of two or more quadrics, PhD thesis, University of Cambridge (1972)

[26] C Soulé, C Voisin, Torsion cohomology classes and algebraic cycles on complex projective manifolds, Adv. Math. 198 (2005) 107 | DOI

Cité par Sources :