Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We classify compact oriented –manifolds with free fundamental group and a torsion-free abelian group in terms of the second homotopy group considered as a –module, the cup product on the second cohomology of the universal covering, and the second Stiefel–Whitney class of the universal covering. We apply this to the classification of simple boundary links of –spheres in . Using this we give a complete algebraic picture of closed –manifolds with free fundamental group and trivial second homology group.
Kreck, Matthias 1 ; Su, Yang 2
@article{GT_2017_21_5_a8, author = {Kreck, Matthias and Su, Yang}, title = {On 5{\textendash}manifolds with free fundamental group and simple boundary links in {S5}}, journal = {Geometry & topology}, pages = {2989--3008}, publisher = {mathdoc}, volume = {21}, number = {5}, year = {2017}, doi = {10.2140/gt.2017.21.2989}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2017.21.2989/} }
TY - JOUR AU - Kreck, Matthias AU - Su, Yang TI - On 5–manifolds with free fundamental group and simple boundary links in S5 JO - Geometry & topology PY - 2017 SP - 2989 EP - 3008 VL - 21 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2017.21.2989/ DO - 10.2140/gt.2017.21.2989 ID - GT_2017_21_5_a8 ER -
%0 Journal Article %A Kreck, Matthias %A Su, Yang %T On 5–manifolds with free fundamental group and simple boundary links in S5 %J Geometry & topology %D 2017 %P 2989-3008 %V 21 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.2140/gt.2017.21.2989/ %R 10.2140/gt.2017.21.2989 %F GT_2017_21_5_a8
Kreck, Matthias; Su, Yang. On 5–manifolds with free fundamental group and simple boundary links in S5. Geometry & topology, Tome 21 (2017) no. 5, pp. 2989-3008. doi : 10.2140/gt.2017.21.2989. http://geodesic.mathdoc.fr/articles/10.2140/gt.2017.21.2989/
[1] Fibering manifolds over a circle, Comment. Math. Helv. 40 (1966) 153 | DOI
, ,[2] Mayer–Vietoris sequences in hermitian K–theory, from: "Algebraic –theory, III: Hermitian –theory and geometric applications" (editor H Bass), Lecture Notes in Math. 343, Springer (1973) 478 | DOI
,[3] La stratification naturelle des espaces de fonctions différentiables réelles et le théorème de la pseudo-isotopie, Inst. Hautes Études Sci. Publ. Math. 39 (1970) 5
,[4] The group G′∕G′′ of a knot group G, Duke Math. J. 30 (1963) 349 | DOI
,[5] Stable-homotopy and homology invariants of boundary links, Trans. Amer. Math. Soc. 334 (1992) 455 | DOI
,[6] Topology of 4–manifolds, 39, Princeton Univ. Press (1990)
, ,[7]
, PhD thesis, Michigan State University (1985)[8] Groups of homotopy spheres, I, Ann. of Math. 77 (1963) 504 | DOI
, ,[9] Surgery and duality, Ann. of Math. 149 (1999) 707 | DOI
,[10] Topological rigidity for non-aspherical manifolds, Pure Appl. Math. Q. 5 (2009) 873 | DOI
, ,[11] An algebraic classification of some knots of codimension two, Comment. Math. Helv. 45 (1970) 185 | DOI
,[12] An algebraic classification of some links of codimension two, Proc. Amer. Math. Soc. 67 (1977) 147 | DOI
,[13] Cobordism of satellite knots, from: "Four-manifold theory" (editors C Gordon, R Kirby), Contemp. Math. 35, Amer. Math. Soc. (1984) 327 | DOI
,[14] Special handlebody decompositions of simply connected algebraic surfaces, Proc. Amer. Math. Soc. 80 (1980) 359 | DOI
,[15] Infinite cyclic coverings, from: "Conference on the topology of manifolds" (editor J G Hocking), Prindle, Weber Schmidt (1968) 115
,[16] Groupes d’homotopie et classes de groupes abéliens, Ann. of Math. 58 (1953) 258 | DOI
,[17] Non-simply-connected surgery and some results in low dimensional topology, Comment. Math. Helv. 45 (1970) 333 | DOI
,[18] On the signature of four-manifolds with universal covering spin, Math. Ann. 295 (1993) 745 | DOI
,[19] Finiteness conditions for CW–complexes, Ann. of Math. 81 (1965) 56 | DOI
,[20] On fibering four- and five-manifolds, Israel J. Math. 59 (1987) 1 | DOI
,Cité par Sources :