On 5–manifolds with free fundamental group and simple boundary links in S5
Geometry & topology, Tome 21 (2017) no. 5, pp. 2989-3008.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We classify compact oriented 5–manifolds with free fundamental group and π2 a torsion-free abelian group in terms of the second homotopy group considered as a π1–module, the cup product on the second cohomology of the universal covering, and the second Stiefel–Whitney class of the universal covering. We apply this to the classification of simple boundary links of 3–spheres in S5. Using this we give a complete algebraic picture of closed 5–manifolds with free fundamental group and trivial second homology group.

DOI : 10.2140/gt.2017.21.2989
Classification : 57R65, 57R40
Keywords: fundamental group, normal bordism, simple boundary link

Kreck, Matthias 1 ; Su, Yang 2

1 Hausdorff Research Institute for Mathematics, Universität Bonn, D-53115 Bonn, Germany
2 Institute of Mathematics, Chinese Academy of Sciences, Bejing, 100190, China
@article{GT_2017_21_5_a8,
     author = {Kreck, Matthias and Su, Yang},
     title = {On 5{\textendash}manifolds with free fundamental group and simple boundary links in {S5}},
     journal = {Geometry & topology},
     pages = {2989--3008},
     publisher = {mathdoc},
     volume = {21},
     number = {5},
     year = {2017},
     doi = {10.2140/gt.2017.21.2989},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2017.21.2989/}
}
TY  - JOUR
AU  - Kreck, Matthias
AU  - Su, Yang
TI  - On 5–manifolds with free fundamental group and simple boundary links in S5
JO  - Geometry & topology
PY  - 2017
SP  - 2989
EP  - 3008
VL  - 21
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2017.21.2989/
DO  - 10.2140/gt.2017.21.2989
ID  - GT_2017_21_5_a8
ER  - 
%0 Journal Article
%A Kreck, Matthias
%A Su, Yang
%T On 5–manifolds with free fundamental group and simple boundary links in S5
%J Geometry & topology
%D 2017
%P 2989-3008
%V 21
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2017.21.2989/
%R 10.2140/gt.2017.21.2989
%F GT_2017_21_5_a8
Kreck, Matthias; Su, Yang. On 5–manifolds with free fundamental group and simple boundary links in S5. Geometry & topology, Tome 21 (2017) no. 5, pp. 2989-3008. doi : 10.2140/gt.2017.21.2989. http://geodesic.mathdoc.fr/articles/10.2140/gt.2017.21.2989/

[1] W Browder, J Levine, Fibering manifolds over a circle, Comment. Math. Helv. 40 (1966) 153 | DOI

[2] S E Cappell, Mayer–Vietoris sequences in hermitian K–theory, from: "Algebraic –theory, III: Hermitian –theory and geometric applications" (editor H Bass), Lecture Notes in Math. 343, Springer (1973) 478 | DOI

[3] J Cerf, La stratification naturelle des espaces de fonctions différentiables réelles et le théorème de la pseudo-isotopie, Inst. Hautes Études Sci. Publ. Math. 39 (1970) 5

[4] R H Crowell, The group G′∕G′′ of a knot group G, Duke Math. J. 30 (1963) 349 | DOI

[5] M Farber, Stable-homotopy and homology invariants of boundary links, Trans. Amer. Math. Soc. 334 (1992) 455 | DOI

[6] M H Freedman, F Quinn, Topology of 4–manifolds, 39, Princeton Univ. Press (1990)

[7] F Hsu, PhD thesis, Michigan State University (1985)

[8] M A Kervaire, J W Milnor, Groups of homotopy spheres, I, Ann. of Math. 77 (1963) 504 | DOI

[9] M Kreck, Surgery and duality, Ann. of Math. 149 (1999) 707 | DOI

[10] M Kreck, W Lück, Topological rigidity for non-aspherical manifolds, Pure Appl. Math. Q. 5 (2009) 873 | DOI

[11] J Levine, An algebraic classification of some knots of codimension two, Comment. Math. Helv. 45 (1970) 185 | DOI

[12] C C Liang, An algebraic classification of some links of codimension two, Proc. Amer. Math. Soc. 67 (1977) 147 | DOI

[13] R A Litherland, Cobordism of satellite knots, from: "Four-manifold theory" (editors C Gordon, R Kirby), Contemp. Math. 35, Amer. Math. Soc. (1984) 327 | DOI

[14] R Mandelbaum, Special handlebody decompositions of simply connected algebraic surfaces, Proc. Amer. Math. Soc. 80 (1980) 359 | DOI

[15] J W Milnor, Infinite cyclic coverings, from: "Conference on the topology of manifolds" (editor J G Hocking), Prindle, Weber Schmidt (1968) 115

[16] J P Serre, Groupes d’homotopie et classes de groupes abéliens, Ann. of Math. 58 (1953) 258 | DOI

[17] J L Shaneson, Non-simply-connected surgery and some results in low dimensional topology, Comment. Math. Helv. 45 (1970) 333 | DOI

[18] P Teichner, On the signature of four-manifolds with universal covering spin, Math. Ann. 295 (1993) 745 | DOI

[19] C T C Wall, Finiteness conditions for CW–complexes, Ann. of Math. 81 (1965) 56 | DOI

[20] S Weinberger, On fibering four- and five-manifolds, Israel J. Math. 59 (1987) 1 | DOI

Cité par Sources :