Convexity of the extended K-energy and the large time behavior of the weak Calabi flow
Geometry & topology, Tome 21 (2017) no. 5, pp. 2945-2988.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

Let (X,ω) be a compact connected Kähler manifold and denote by (p,dp) the metric completion of the space of Kähler potentials ω with respect to the Lp–type path length metric dp. First, we show that the natural analytic extension of the (twisted) Mabuchi K-energy to p is a dp–lsc functional that is convex along finite-energy geodesics. Second, following the program of J Streets, we use this to study the asymptotics of the weak (twisted) Calabi flow inside the CAT(0) metric space (2,d2). This flow exists for all times and coincides with the usual smooth (twisted) Calabi flow whenever the latter exists. We show that the weak (twisted) Calabi flow either diverges with respect to the d2–metric or it d1–converges to some minimizer of the K-energy inside 2. This gives the first concrete result about the long-time convergence of this flow on general Kähler manifolds, partially confirming a conjecture of Donaldson. We investigate the possibility of constructing destabilizing geodesic rays asymptotic to diverging weak (twisted) Calabi trajectories, and give a result in the case when the twisting form is Kähler. Finally, when a cscK metric exists in ω, our results imply that the weak Calabi flow d1–converges to such a metric.

DOI : 10.2140/gt.2017.21.2945
Classification : 53C55, 32W20, 32U05
Keywords: Calabi flow, Kähler metrics, complex Monge–Ampère equations

Berman, Robert 1 ; Darvas, Tamás 2 ; Lu, Chinh 3

1 Chalmers University of Technology and University of Gothenburg, SE-412 96 Gothenburg, Sweden
2 Department of Mathematics, University of Maryland, College Park, MD 20742-4015, United States
3 Chalmers University of Technology and University of Gothenburg, Kaptensgatan 28D, SE-414 59 Göteborg, Sweden, Département de Mathématiques, Université Paris-Sud, Bâtiment 425, Bureau 144, 91405 Paris Orsay Cedex, France
@article{GT_2017_21_5_a7,
     author = {Berman, Robert and Darvas, Tam\'as and Lu, Chinh},
     title = {Convexity of the extended {K-energy} and the large time behavior of the weak {Calabi} flow},
     journal = {Geometry & topology},
     pages = {2945--2988},
     publisher = {mathdoc},
     volume = {21},
     number = {5},
     year = {2017},
     doi = {10.2140/gt.2017.21.2945},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2017.21.2945/}
}
TY  - JOUR
AU  - Berman, Robert
AU  - Darvas, Tamás
AU  - Lu, Chinh
TI  - Convexity of the extended K-energy and the large time behavior of the weak Calabi flow
JO  - Geometry & topology
PY  - 2017
SP  - 2945
EP  - 2988
VL  - 21
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2017.21.2945/
DO  - 10.2140/gt.2017.21.2945
ID  - GT_2017_21_5_a7
ER  - 
%0 Journal Article
%A Berman, Robert
%A Darvas, Tamás
%A Lu, Chinh
%T Convexity of the extended K-energy and the large time behavior of the weak Calabi flow
%J Geometry & topology
%D 2017
%P 2945-2988
%V 21
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2017.21.2945/
%R 10.2140/gt.2017.21.2945
%F GT_2017_21_5_a7
Berman, Robert; Darvas, Tamás; Lu, Chinh. Convexity of the extended K-energy and the large time behavior of the weak Calabi flow. Geometry & topology, Tome 21 (2017) no. 5, pp. 2945-2988. doi : 10.2140/gt.2017.21.2945. http://geodesic.mathdoc.fr/articles/10.2140/gt.2017.21.2945/

[1] L Ambrosio, N Gigli, G Savaré, Gradient flows in metric spaces and in the space of probability measures, Birkhäuser (2008)

[2] T Aubin, Équations du type Monge–Ampère sur les variétés kählériennes compactes, Bull. Sci. Math. 102 (1978) 63

[3] M Bačák, The proximal point algorithm in metric spaces, Israel J. Math. 194 (2013) 689 | DOI

[4] E Bedford, B A Taylor, The Dirichlet problem for a complex Monge–Ampère equation, Invent. Math. 37 (1976) 1 | DOI

[5] E Bedford, B A Taylor, A new capacity for plurisubharmonic functions, Acta Math. 149 (1982) 1 | DOI

[6] E Bedford, B A Taylor, Fine topology, Šilov boundary, and (ddc)n, J. Funct. Anal. 72 (1987) 225 | DOI

[7] R J Berman, A thermodynamical formalism for Monge–Ampère equations, Moser–Trudinger inequalities and Kähler–Einstein metrics, Adv. Math. 248 (2013) 1254 | DOI

[8] R J Berman, B Berndtsson, Convexity of the K-energy on the space of Kähler metrics and uniqueness of extremal metrics, preprint (2014)

[9] R J Berman, S Boucksom, P Eyssidieux, V Guedj, A Zeriahi, Kähler–Einstein metrics and the Kähler–Ricci flow on log Fano varieties, preprint (2011)

[10] R J Berman, S Boucksom, V Guedj, A Zeriahi, A variational approach to complex Monge–Ampère equations, Publ. Math. Inst. Hautes Études Sci. 117 (2013) 179 | DOI

[11] R J Berman, T Darvas, C H Lu, Regularity of weak minimizers of the K-energy and applications to properness and K-stability, preprint (2016)

[12] R J Berman, H Guenancia, Kähler–Einstein metrics on stable varieties and log canonical pairs, Geom. Funct. Anal. 24 (2014) 1683 | DOI

[13] B Berndtsson, The openness conjecture and complex Brunn–Minkowski inequalities, from: "Complex geometry and dynamics" (editors J E Fornæss, M Irgens, E F Wold), Abel Symposia 10, Springer (2015) 29 | DOI

[14] Z Błocki, On geodesics in the space of Kähler metrics, from: "Advances in geometric analysis" (editors S Janeczko, J Li, D H Phong), Adv. Lect. Math. 21, International Press (2012) 3

[15] Z Błocki, S Kołodziej, On regularization of plurisubharmonic functions on manifolds, Proc. Amer. Math. Soc. 135 (2007) 2089 | DOI

[16] T Bloom, N Levenberg, Pluripotential energy, Potential Anal. 36 (2012) 155 | DOI

[17] S Boucksom, P Eyssidieux, V Guedj, A Zeriahi, Monge–Ampère equations in big cohomology classes, Acta Math. 205 (2010) 199 | DOI

[18] M R Bridson, A Haefliger, Metric spaces of non-positive curvature, 319, Springer (1999) | DOI

[19] X Chen, On the lower bound of the Mabuchi energy and its application, Internat. Math. Res. Notices (2000) 607 | DOI

[20] X Chen, The space of Kähler metrics, J. Differential Geom. 56 (2000) 189 | DOI

[21] X X Chen, A new parabolic flow in Kähler manifolds, Comm. Anal. Geom. 12 (2004) 837 | DOI

[22] X Chen, Space of Kähler metrics, IV : On the lower bound of the K-energy, preprint (2008)

[23] X Chen, On the existence of constant scalar curvature Kähler metric : a new perspective, preprint (2015)

[24] X X Chen, W Y He, On the Calabi flow, Amer. J. Math. 130 (2008) 539 | DOI

[25] X Chen, W He, The Calabi flow on toric Fano surfaces, Math. Res. Lett. 17 (2010) 231 | DOI

[26] X Chen, M Paun, Y Zeng, On deformation of extremal metrics, preprint (2015)

[27] X Chen, S Sun, Calabi flow, geodesic rays, and uniqueness of constant scalar curvature Kähler metrics, Ann. of Math. 180 (2014) 407 | DOI

[28] P T Chruściel, Semi-global existence and convergence of solutions of the Robinson–Trautman (2–dimensional Calabi) equation, Comm. Math. Phys. 137 (1991) 289

[29] T Darvas, The Mabuchi completion of the space of Kähler potentials, preprint (2015)

[30] T Darvas, The Mabuchi geometry of finite energy classes, Adv. Math. 285 (2015) 182 | DOI

[31] T Darvas, W He, Geodesic rays and Kähler–Ricci trajectories on Fano manifolds, Trans. Amer. Math. Soc. (2017) | DOI

[32] T Darvas, Y A Rubinstein, Tian’s properness conjectures and Finsler geometry of the space of Kähler metrics, J. Amer. Math. Soc. 30 (2017) 347 | DOI

[33] E De Giorgi, New problems on minimizing movements, from: "Boundary value problems for partial differential equations and applications" (editors J L Lions, C Baiocchi), Res. Notes Appl. Math. 29, Masson (1993) 81

[34] J P Demailly, Regularization of closed positive currents of type (1,1) by the flow of a Chern connection, from: "Contributions to complex analysis and analytic geometry" (editors H Skoda, J M Trépreau), Aspects Math. E26, Vieweg (1994) 105 | DOI

[35] A Dembo, O Zeitouni, Large deviations: techniques and applications, Jones and Bartlett (1993) | DOI

[36] R Dervan, Uniform stability of twisted constant scalar curvature Kähler metrics, Int. Math. Res. Not. 2016 (2016) 4728 | DOI

[37] S Dinew, Uniqueness in E(X,ω), J. Funct. Anal. 256 (2009) 2113 | DOI

[38] S K Donaldson, Symmetric spaces, Kähler geometry and Hamiltonian dynamics, from: "Northern California Symplectic Geometry Seminar" (editors Y Eliashberg, D Fuchs, T Ratiu, A Weinstein), Amer. Math. Soc. Transl. Ser. 2 196, Amer. Math. Soc. (1999) 13 | DOI

[39] S K Donaldson, Conjectures in Kähler geometry, from: "Strings and geometry" (editors M Douglas, J Gauntlett, M Gross), Clay Math. Proc. 3, Amer. Math. Soc. (2004) 71

[40] R Feng, H Huang, The global existence and convergence of the Calabi flow on Cn∕Zn + iZn, J. Funct. Anal. 263 (2012) 1129 | DOI

[41] J Fine, Constant scalar curvature Kähler metrics on fibred complex surfaces, J. Differential Geom. 68 (2004) 397 | DOI

[42] J Fine, Calabi flow and projective embeddings, J. Differential Geom. 84 (2010) 489 | DOI

[43] Q Guan, X Zhou, A proof of Demailly’s strong openness conjecture, Ann. of Math. 182 (2015) 605 | DOI

[44] V Guedj, The metric completion of the Riemannian space of Kähler metrics, preprint (2014)

[45] V Guedj, A Zeriahi, The weighted Monge–Ampère energy of quasiplurisubharmonic functions, J. Funct. Anal. 250 (2007) 442 | DOI

[46] V Guedj, A Zeriahi, Regularizing properties of the twisted Kähler–Ricci flow, preprint (2013)

[47] V Guedj, A Zeriahi, Degenerate complex Monge–Ampère equations, 26, Eur. Math. Soc. (2017) | DOI

[48] W He, On the convergence of the Calabi flow, Proc. Amer. Math. Soc. 143 (2015) 1273 | DOI

[49] H Huang, Convergence of the Calabi flow on toric varieties and related Kähler manifolds, J. Geom. Anal. 25 (2015) 1080 | DOI

[50] H Huang, K Zheng, Stability of the Calabi flow near an extremal metric, Ann. Sc. Norm. Super. Pisa Cl. Sci. 11 (2012) 167 | DOI

[51] W A Kirk, B Panyanak, A concept of convergence in geodesic spaces, Nonlinear Anal. 68 (2008) 3689 | DOI

[52] S Kołodziej, The complex Monge–Ampère equation, Acta Math. 180 (1998) 69 | DOI

[53] S Kołodziej, Hölder continuity of solutions to the complex Monge–Ampère equation with the right-hand side in Lp : the case of compact Kähler manifolds, Math. Ann. 342 (2008) 379 | DOI

[54] H Li, B Wang, K Zheng, Regularity scales and convergence of the Calabi flow, preprint (2015)

[55] T Mabuchi, Some symplectic geometry on compact Kähler manifolds, I, Osaka J. Math. 24 (1987) 227

[56] U F Mayer, Gradient flows on nonpositively curved metric spaces and harmonic maps, Comm. Anal. Geom. 6 (1998) 199 | DOI

[57] E D Nezza, C H Lu, Uniqueness and short time regularity of the weak Kähler–Ricci flow, preprint (2014)

[58] J Pook, Twisted Calabi flow on Riemann surfaces, Int. Math. Res. Not. 2016 (2016) 83 | DOI

[59] S Semmes, Complex Monge–Ampère and symplectic manifolds, Amer. J. Math. 114 (1992) 495 | DOI

[60] J Stoppa, Twisted constant scalar curvature Kähler metrics and Kähler slope stability, J. Differential Geom. 83 (2009) 663 | DOI

[61] J Streets, Long time existence of minimizing movement solutions of Calabi flow, Adv. Math. 259 (2014) 688 | DOI

[62] J Streets, The consistency and convergence of K–energy minimizing movements, Trans. Amer. Math. Soc. 368 (2016) 5075 | DOI

[63] G Székelyhidi, Remark on the Calabi flow with bounded curvature, Univ. Iagel. Acta Math. 50 (2013) 107 | DOI

[64] G Székelyhidi, V Tosatti, Regularity of weak solutions of a complex Monge–Ampère equation, Anal. PDE 4 (2011) 369 | DOI

[65] V Tosatti, B Weinkove, The Calabi flow with small initial energy, Math. Res. Lett. 14 (2007) 1033 | DOI

[66] C Villani, Topics in optimal transportation, 58, Amer. Math. Soc. (2003) | DOI

Cité par Sources :