Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We take a new look at the curvilinear Hilbert scheme of points on a smooth projective variety as a projective completion of the nonreductive quotient of holomorphic map germs from the complex line into by polynomial reparametrisations. Using an algebraic model of this quotient coming from global singularity theory we develop an iterated residue formula for tautological integrals over curvilinear Hilbert schemes.
Bérczi, Gergely 1
@article{GT_2017_21_5_a6, author = {B\'erczi, Gergely}, title = {Tautological integrals on curvilinear {Hilbert} schemes}, journal = {Geometry & topology}, pages = {2897--2944}, publisher = {mathdoc}, volume = {21}, number = {5}, year = {2017}, doi = {10.2140/gt.2017.21.2897}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2017.21.2897/} }
Bérczi, Gergely. Tautological integrals on curvilinear Hilbert schemes. Geometry & topology, Tome 21 (2017) no. 5, pp. 2897-2944. doi : 10.2140/gt.2017.21.2897. http://geodesic.mathdoc.fr/articles/10.2140/gt.2017.21.2897/
[1] The moment map and equivariant cohomology, Topology 23 (1984) 1 | DOI
, ,[2] Thom polynomials of Morin singularities and the Green–Griffiths–Lang conjecture, preprint (2010)
,[3] Geometric invariant theory for graded unipotent groups and applications, preprint (2016)
, , , ,[4] Projective completions of graded unipotent quotients, preprint (2016)
, , , ,[5] Graded unipotent groups and Grosshans theory, preprint (2015)
, ,[6] Tautological integrals on Hilbert schemes and counting singular hypersurfaces, in preparation
, ,[7] Thom polynomials of Morin singularities, Ann. of Math. 175 (2012) 567 | DOI
, ,[8] Heat kernels and Dirac operators, 298, Springer (2004)
, , ,[9] Zéros d’un champ de vecteurs et classes caractéristiques équivariantes, Duke Math. J. 50 (1983) 539 | DOI
, ,[10] Differential forms in algebraic topology, 82, Springer (1982) | DOI
, ,[11] Algebraic criteria for Kobayashi hyperbolic projective varieties and jet differentials, from: "Algebraic geometry" (editors J Kollár, R Lazarsfeld, D R Morrison), Proc. Sympos. Pure Math. 62, Amer. Math. Soc. (1997) 285 | DOI
,[12] Orbites coadjointes et cohomologie équivariante, from: "The orbit method in representation theory" (editors M Duflo, N V Pedersen, M Vergne), Progr. Math. 82, Birkhäuser (1990) 11
, ,[13] Characteristic classes in the Chow ring, J. Algebraic Geom. 6 (1997) 431
, ,[14] Commutative algebra, 150, Springer (1995) | DOI
,[15] On the cobordism class of the Hilbert scheme of a surface, J. Algebraic Geom. 10 (2001) 81
, , ,[16] Thom series of contact singularities, Ann. of Math. 176 (2012) 1381 | DOI
, ,[17] Intersection theory, 2, Springer (1984) | DOI
,[18] Equivariant cohomology in algebraic geometry, Eilenberg lectures (2007)
,[19] The Thom polynomial of Σ1111, from: "Singularities, 1" (editor P Orlik), Proc. Sympos. Pure Math. 40, Amer. Math. Soc. (1983) 399
,[20] A conjectural generating function for numbers of curves on surfaces, Comm. Math. Phys. 196 (1998) 523 | DOI
,[21] Two applications of algebraic geometry to entire holomorphic mappings, from: "The Chern Symposium 1979" (editors H H Wu, S Kobayashi, I M Singer, A Weinstein, J Wolf), Springer (1980) 41 | DOI
, ,[22] Characteristic classes of singularity theory, from: "The Arnold–Gelfand mathematical seminars" (editors V I Arnold, I M Gelfand, V S Retakh, M Smirnov), Birkhäuser (1997) 325 | DOI
,[23] Multisingularities, cobordisms, and enumerative geometry, Uspekhi Mat. Nauk 58 (2003) 29
,[24] Enumerating singular curves on surfaces, from: "Algebraic geometry: Hirzebruch 70" (editors P Pragacz, M Szurek, J Wiśniewski), Contemp. Math. 241, Amer. Math. Soc. (1999) 209 | DOI
, ,[25] A short proof of the Göttsche conjecture, Geom. Topol. 15 (2011) 397 | DOI
, , ,[26] Chern classes of tautological sheaves on Hilbert schemes of points on surfaces, Invent. Math. 136 (1999) 157 | DOI
,[27] Zero dimensional Donaldson–Thomas invariants of threefolds, Geom. Topol. 10 (2006) 2117 | DOI
,[28] Family blowup formula, admissible graphs and the enumeration of singular curves, I, J. Differential Geom. 56 (2000) 381 | DOI
,[29] Segre classes and Hilbert schemes of points, preprint (2015)
, , ,[30] Superconnections, Thom classes, and equivariant differential forms, Topology 25 (1986) 85 | DOI
, ,[31] Combinatorial commutative algebra, 227, Springer (2005) | DOI
, ,[32] Heisenberg algebra and Hilbert schemes of points on projective surfaces, Ann. of Math. 145 (1997) 379 | DOI
,[33] Universal polynomials for tautological integrals on Hilbert schemes, Geom. Topol. 21 (2017) 253 | DOI
,[34] Equivariant multiplicities on complex varieties, from: "Orbites unipotentes et représentations, III", Astérisque 173–174, Société Mathématique de France (1989) 313
,[35] Iterated residues and multiple Bernoulli polynomials, Internat. Math. Res. Notices (1998) 937 | DOI
,[36] A proof of the Göttsche–Yau–Zaslow formula, J. Differential Geom. 90 (2012) 439 | DOI
,[37] Polynômes de Joseph et représentation de Springer, Ann. Sci. École Norm. Sup. 23 (1990) 543 | DOI
,Cité par Sources :