Tautological integrals on curvilinear Hilbert schemes
Geometry & topology, Tome 21 (2017) no. 5, pp. 2897-2944.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We take a new look at the curvilinear Hilbert scheme of points on a smooth projective variety X as a projective completion of the nonreductive quotient of holomorphic map germs from the complex line into X by polynomial reparametrisations. Using an algebraic model of this quotient coming from global singularity theory we develop an iterated residue formula for tautological integrals over curvilinear Hilbert schemes.

DOI : 10.2140/gt.2017.21.2897
Classification : 14C05, 14N10, 55N91
Keywords: Hilbert scheme of points, curve counting, Göttsche formula, tautological integrals, nonreductive quotients, equivariant localisation, iterated residue

Bérczi, Gergely 1

1 Mathematical Institute, University of Oxford, Andrew Wiles Building, OX2 6GG Oxford, UK, Department of Mathematics, ETH Zürich, Raemistrasse 101, HG J 16.4, CH-8092 Zürich, Switzerland
@article{GT_2017_21_5_a6,
     author = {B\'erczi, Gergely},
     title = {Tautological integrals on curvilinear {Hilbert} schemes},
     journal = {Geometry & topology},
     pages = {2897--2944},
     publisher = {mathdoc},
     volume = {21},
     number = {5},
     year = {2017},
     doi = {10.2140/gt.2017.21.2897},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2017.21.2897/}
}
TY  - JOUR
AU  - Bérczi, Gergely
TI  - Tautological integrals on curvilinear Hilbert schemes
JO  - Geometry & topology
PY  - 2017
SP  - 2897
EP  - 2944
VL  - 21
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2017.21.2897/
DO  - 10.2140/gt.2017.21.2897
ID  - GT_2017_21_5_a6
ER  - 
%0 Journal Article
%A Bérczi, Gergely
%T Tautological integrals on curvilinear Hilbert schemes
%J Geometry & topology
%D 2017
%P 2897-2944
%V 21
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2017.21.2897/
%R 10.2140/gt.2017.21.2897
%F GT_2017_21_5_a6
Bérczi, Gergely. Tautological integrals on curvilinear Hilbert schemes. Geometry & topology, Tome 21 (2017) no. 5, pp. 2897-2944. doi : 10.2140/gt.2017.21.2897. http://geodesic.mathdoc.fr/articles/10.2140/gt.2017.21.2897/

[1] M F Atiyah, R Bott, The moment map and equivariant cohomology, Topology 23 (1984) 1 | DOI

[2] G Bérczi, Thom polynomials of Morin singularities and the Green–Griffiths–Lang conjecture, preprint (2010)

[3] G Bérczi, B Doran, T Hawes, F Kirwan, Geometric invariant theory for graded unipotent groups and applications, preprint (2016)

[4] G Bérczi, B Doran, T Hawes, F Kirwan, Projective completions of graded unipotent quotients, preprint (2016)

[5] G Bérczi, F Kirwan, Graded unipotent groups and Grosshans theory, preprint (2015)

[6] G Bérczi, A Szenes, Tautological integrals on Hilbert schemes and counting singular hypersurfaces, in preparation

[7] G Bérczi, A Szenes, Thom polynomials of Morin singularities, Ann. of Math. 175 (2012) 567 | DOI

[8] N Berline, E Getzler, M Vergne, Heat kernels and Dirac operators, 298, Springer (2004)

[9] N Berline, M Vergne, Zéros d’un champ de vecteurs et classes caractéristiques équivariantes, Duke Math. J. 50 (1983) 539 | DOI

[10] R Bott, L W Tu, Differential forms in algebraic topology, 82, Springer (1982) | DOI

[11] J P Demailly, Algebraic criteria for Kobayashi hyperbolic projective varieties and jet differentials, from: "Algebraic geometry" (editors J Kollár, R Lazarsfeld, D R Morrison), Proc. Sympos. Pure Math. 62, Amer. Math. Soc. (1997) 285 | DOI

[12] M Duflo, M Vergne, Orbites coadjointes et cohomologie équivariante, from: "The orbit method in representation theory" (editors M Duflo, N V Pedersen, M Vergne), Progr. Math. 82, Birkhäuser (1990) 11

[13] D Edidin, W Graham, Characteristic classes in the Chow ring, J. Algebraic Geom. 6 (1997) 431

[14] D Eisenbud, Commutative algebra, 150, Springer (1995) | DOI

[15] G Ellingsrud, L Göttsche, M Lehn, On the cobordism class of the Hilbert scheme of a surface, J. Algebraic Geom. 10 (2001) 81

[16] L M Fehér, R Rimányi, Thom series of contact singularities, Ann. of Math. 176 (2012) 1381 | DOI

[17] W Fulton, Intersection theory, 2, Springer (1984) | DOI

[18] W Fulton, Equivariant cohomology in algebraic geometry, Eilenberg lectures (2007)

[19] T Gaffney, The Thom polynomial of Σ1111, from: "Singularities, 1" (editor P Orlik), Proc. Sympos. Pure Math. 40, Amer. Math. Soc. (1983) 399

[20] L Göttsche, A conjectural generating function for numbers of curves on surfaces, Comm. Math. Phys. 196 (1998) 523 | DOI

[21] M Green, P Griffiths, Two applications of algebraic geometry to entire holomorphic mappings, from: "The Chern Symposium 1979" (editors H H Wu, S Kobayashi, I M Singer, A Weinstein, J Wolf), Springer (1980) 41 | DOI

[22] M É Kazarian, Characteristic classes of singularity theory, from: "The Arnold–Gelfand mathematical seminars" (editors V I Arnold, I M Gelfand, V S Retakh, M Smirnov), Birkhäuser (1997) 325 | DOI

[23] M È Kazarian, Multisingularities, cobordisms, and enumerative geometry, Uspekhi Mat. Nauk 58 (2003) 29

[24] S Kleiman, R Piene, Enumerating singular curves on surfaces, from: "Algebraic geometry: Hirzebruch 70" (editors P Pragacz, M Szurek, J Wiśniewski), Contemp. Math. 241, Amer. Math. Soc. (1999) 209 | DOI

[25] M Kool, V Shende, R P Thomas, A short proof of the Göttsche conjecture, Geom. Topol. 15 (2011) 397 | DOI

[26] M Lehn, Chern classes of tautological sheaves on Hilbert schemes of points on surfaces, Invent. Math. 136 (1999) 157 | DOI

[27] J Li, Zero dimensional Donaldson–Thomas invariants of threefolds, Geom. Topol. 10 (2006) 2117 | DOI

[28] A K Liu, Family blowup formula, admissible graphs and the enumeration of singular curves, I, J. Differential Geom. 56 (2000) 381 | DOI

[29] A Marian, D Oprea, R Pandharipande, Segre classes and Hilbert schemes of points, preprint (2015)

[30] V Mathai, D Quillen, Superconnections, Thom classes, and equivariant differential forms, Topology 25 (1986) 85 | DOI

[31] E Miller, B Sturmfels, Combinatorial commutative algebra, 227, Springer (2005) | DOI

[32] H Nakajima, Heisenberg algebra and Hilbert schemes of points on projective surfaces, Ann. of Math. 145 (1997) 379 | DOI

[33] J Rennemo, Universal polynomials for tautological integrals on Hilbert schemes, Geom. Topol. 21 (2017) 253 | DOI

[34] W Rossmann, Equivariant multiplicities on complex varieties, from: "Orbites unipotentes et représentations, III", Astérisque 173–174, Société Mathématique de France (1989) 313

[35] A Szenes, Iterated residues and multiple Bernoulli polynomials, Internat. Math. Res. Notices (1998) 937 | DOI

[36] Y J Tzeng, A proof of the Göttsche–Yau–Zaslow formula, J. Differential Geom. 90 (2012) 439 | DOI

[37] M Vergne, Polynômes de Joseph et représentation de Springer, Ann. Sci. École Norm. Sup. 23 (1990) 543 | DOI

Cité par Sources :