Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
Let be the Torelli subgroup of . We give an explicit finite set of generators for as a –module. Corollaries include a version of surjective representation stability for , the vanishing of the –coinvariants of , and the vanishing of the second rational homology group of the level congruence subgroup of . Our generating set is derived from a new group presentation for which is infinite but which has a simple recursive form.
Day, Matthew 1 ; Putman, Andrew 2
@article{GT_2017_21_5_a5, author = {Day, Matthew and Putman, Andrew}, title = {On the second homology group of the {Torelli} subgroup of {Aut(Fn)}}, journal = {Geometry & topology}, pages = {2851--2896}, publisher = {mathdoc}, volume = {21}, number = {5}, year = {2017}, doi = {10.2140/gt.2017.21.2851}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2017.21.2851/} }
TY - JOUR AU - Day, Matthew AU - Putman, Andrew TI - On the second homology group of the Torelli subgroup of Aut(Fn) JO - Geometry & topology PY - 2017 SP - 2851 EP - 2896 VL - 21 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2017.21.2851/ DO - 10.2140/gt.2017.21.2851 ID - GT_2017_21_5_a5 ER -
Day, Matthew; Putman, Andrew. On the second homology group of the Torelli subgroup of Aut(Fn). Geometry & topology, Tome 21 (2017) no. 5, pp. 2851-2896. doi : 10.2140/gt.2017.21.2851. http://geodesic.mathdoc.fr/articles/10.2140/gt.2017.21.2851/
[1] On the automorphisms of free groups and free nilpotent groups, Proc. London Math. Soc. 15 (1965) 239 | DOI
,[2] The Jacobian map on outer space, PhD thesis, Cornell University (2011)
,[3] Endomorphic presentations of branch groups, J. Algebra 268 (2003) 419 | DOI
,[4] Dimension of the Torelli group for Out(Fn), Invent. Math. 170 (2007) 1 | DOI
, , ,[5] Towards representation stability for the second homology of the Torelli group, Geom. Topol. 16 (2012) 1725 | DOI
, ,[6] Density properties for certain subgroups of semi-simple groups without compact components, Ann. of Math. 72 (1960) 179 | DOI
,[7] Stable real cohomology of arithmetic groups, Ann. Sci. École Norm. Sup. 7 (1974) 235 | DOI
,[8] Stable real cohomology of arithmetic groups, II, from: "Manifolds and Lie groups" (editors S Murakami, J Hano, K Okamoto, A Morimoto, H Ozeki), Progr. Math. 14, Birkhäuser (1981) 21 | DOI
,[9] Generators for the hyperelliptic Torelli group and the kernel of the Burau representation at t = −1, Invent. Math. 200 (2015) 263 | DOI
, , ,[10] Cohomology of groups, 87, Springer (1994) | DOI
,[11] Parameterized Abel–Jacobi maps and abelian cycles in the Torelli group, J. Topol. 5 (2012) 15 | DOI
, ,[12] Representation theory and homological stability, Adv. Math. 245 (2013) 250 | DOI
, ,[13] The codimension-one cohomology of SLnZ, Geom. Topol. 21 (2017) 999 | DOI
, ,[14] On automorphism groups of free groups and their nilpotent quotients, in preparation
, ,[15] A Birman exact sequence for Aut(Fn), Adv. Math. 231 (2012) 243 | DOI
, ,[16] The complex of partial bases for Fn and finite generation of the Torelli subgroup of Aut(Fn), Geom. Dedicata 164 (2013) 139 | DOI
, ,[17] A Birman exact sequence for the Torelli subgroup of Aut(Fn), Internat. J. Algebra Comput. 26 (2016) 585 | DOI
, ,[18] Automorphisms of Fn which act trivially on homology, in preparation
,[19] Stable homology of automorphism groups of free groups, Ann. of Math. 173 (2011) 705 | DOI
,[20] Cerf theory for graphs, J. London Math. Soc. 58 (1998) 633 | DOI
, ,[21] Stabilization for mapping class groups of 3–manifolds, Duke Math. J. 155 (2010) 205 | DOI
, ,[22] An abelian quotient of the mapping class group Ig, Math. Ann. 249 (1980) 225 | DOI
,[23] Cohomological aspects of Magnus expansions, preprint (2005)
,[24] The non-finite presentability of IA(F3) and GL2(Z[t,t−1]), Invent. Math. 129 (1997) 595 | DOI
, ,[25] Combinatorial group theory, 89, Springer (1977) | DOI
, ,[26] Über n–dimensionale Gittertransformationen, Acta Math. 64 (1935) 353 | DOI
,[27] Die Isomorphismen der allgemeinen, unendlichen Gruppe mit zwei Erzeugenden, Math. Ann. 78 (1917) 385 | DOI
,[28] An infinite presentation of the Torelli group, Geom. Funct. Anal. 19 (2009) 591 | DOI
,[29] Obtaining presentations from group actions without making choices, Algebr. Geom. Topol. 11 (2011) 1737 | DOI
,[30] The second rational homology group of the moduli space of curves with level structures, Adv. Math. 229 (2012) 1205 | DOI
,[31] The abelianization of the congruence IA–automorphism group of a free group, Math. Proc. Cambridge Philos. Soc. 142 (2007) 239 | DOI
,[32] A survey of the Johnson homomorphisms of the automorphism groups of free groups and related topics, preprint (2012)
,Cité par Sources :