On the second homology group of the Torelli subgroup of Aut(Fn)
Geometry & topology, Tome 21 (2017) no. 5, pp. 2851-2896.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

Let IAn be the Torelli subgroup of Aut(Fn). We give an explicit finite set of generators for H2(IAn) as a GLn()–module. Corollaries include a version of surjective representation stability for H2(IAn), the vanishing of the GLn()–coinvariants of H2(IAn), and the vanishing of the second rational homology group of the level congruence subgroup of Aut(Fn). Our generating set is derived from a new group presentation for IAn which is infinite but which has a simple recursive form.

DOI : 10.2140/gt.2017.21.2851
Classification : 20E05, 20E36, 20F05, 20J06
Keywords: automorphism group of free group, Torelli group

Day, Matthew 1 ; Putman, Andrew 2

1 Department of Mathematical Sciences, University of Arkansas, Fayetteville, AR, United States
2 Department of Mathematics, University of Notre Dame, Notre Dame, IN, United States
@article{GT_2017_21_5_a5,
     author = {Day, Matthew and Putman, Andrew},
     title = {On the second homology group of the {Torelli} subgroup of {Aut(Fn)}},
     journal = {Geometry & topology},
     pages = {2851--2896},
     publisher = {mathdoc},
     volume = {21},
     number = {5},
     year = {2017},
     doi = {10.2140/gt.2017.21.2851},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2017.21.2851/}
}
TY  - JOUR
AU  - Day, Matthew
AU  - Putman, Andrew
TI  - On the second homology group of the Torelli subgroup of Aut(Fn)
JO  - Geometry & topology
PY  - 2017
SP  - 2851
EP  - 2896
VL  - 21
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2017.21.2851/
DO  - 10.2140/gt.2017.21.2851
ID  - GT_2017_21_5_a5
ER  - 
%0 Journal Article
%A Day, Matthew
%A Putman, Andrew
%T On the second homology group of the Torelli subgroup of Aut(Fn)
%J Geometry & topology
%D 2017
%P 2851-2896
%V 21
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2017.21.2851/
%R 10.2140/gt.2017.21.2851
%F GT_2017_21_5_a5
Day, Matthew; Putman, Andrew. On the second homology group of the Torelli subgroup of Aut(Fn). Geometry & topology, Tome 21 (2017) no. 5, pp. 2851-2896. doi : 10.2140/gt.2017.21.2851. http://geodesic.mathdoc.fr/articles/10.2140/gt.2017.21.2851/

[1] S Andreadakis, On the automorphisms of free groups and free nilpotent groups, Proc. London Math. Soc. 15 (1965) 239 | DOI

[2] O Baker, The Jacobian map on outer space, PhD thesis, Cornell University (2011)

[3] L Bartholdi, Endomorphic presentations of branch groups, J. Algebra 268 (2003) 419 | DOI

[4] M Bestvina, K U Bux, D Margalit, Dimension of the Torelli group for Out(Fn), Invent. Math. 170 (2007) 1 | DOI

[5] S K Boldsen, M Hauge Dollerup, Towards representation stability for the second homology of the Torelli group, Geom. Topol. 16 (2012) 1725 | DOI

[6] A Borel, Density properties for certain subgroups of semi-simple groups without compact components, Ann. of Math. 72 (1960) 179 | DOI

[7] A Borel, Stable real cohomology of arithmetic groups, Ann. Sci. École Norm. Sup. 7 (1974) 235 | DOI

[8] A Borel, Stable real cohomology of arithmetic groups, II, from: "Manifolds and Lie groups" (editors S Murakami, J Hano, K Okamoto, A Morimoto, H Ozeki), Progr. Math. 14, Birkhäuser (1981) 21 | DOI

[9] T Brendle, D Margalit, A Putman, Generators for the hyperelliptic Torelli group and the kernel of the Burau representation at t = −1, Invent. Math. 200 (2015) 263 | DOI

[10] K S Brown, Cohomology of groups, 87, Springer (1994) | DOI

[11] T Church, B Farb, Parameterized Abel–Jacobi maps and abelian cycles in the Torelli group, J. Topol. 5 (2012) 15 | DOI

[12] T Church, B Farb, Representation theory and homological stability, Adv. Math. 245 (2013) 250 | DOI

[13] T Church, A Putman, The codimension-one cohomology of SLnZ, Geom. Topol. 21 (2017) 999 | DOI

[14] F Cohen, J Pakianathan, On automorphism groups of free groups and their nilpotent quotients, in preparation

[15] M Day, A Putman, A Birman exact sequence for Aut(Fn), Adv. Math. 231 (2012) 243 | DOI

[16] M Day, A Putman, The complex of partial bases for Fn and finite generation of the Torelli subgroup of Aut(Fn), Geom. Dedicata 164 (2013) 139 | DOI

[17] M Day, A Putman, A Birman exact sequence for the Torelli subgroup of Aut(Fn), Internat. J. Algebra Comput. 26 (2016) 585 | DOI

[18] B Farb, Automorphisms of Fn which act trivially on homology, in preparation

[19] S Galatius, Stable homology of automorphism groups of free groups, Ann. of Math. 173 (2011) 705 | DOI

[20] A Hatcher, K Vogtmann, Cerf theory for graphs, J. London Math. Soc. 58 (1998) 633 | DOI

[21] A Hatcher, N Wahl, Stabilization for mapping class groups of 3–manifolds, Duke Math. J. 155 (2010) 205 | DOI

[22] D Johnson, An abelian quotient of the mapping class group Ig, Math. Ann. 249 (1980) 225 | DOI

[23] N Kawazumi, Cohomological aspects of Magnus expansions, preprint (2005)

[24] S Krstić, J Mccool, The non-finite presentability of IA(F3) and GL2(Z[t,t−1]), Invent. Math. 129 (1997) 595 | DOI

[25] R C Lyndon, P E Schupp, Combinatorial group theory, 89, Springer (1977) | DOI

[26] W Magnus, Über n–dimensionale Gittertransformationen, Acta Math. 64 (1935) 353 | DOI

[27] J Nielsen, Die Isomorphismen der allgemeinen, unendlichen Gruppe mit zwei Erzeugenden, Math. Ann. 78 (1917) 385 | DOI

[28] A Putman, An infinite presentation of the Torelli group, Geom. Funct. Anal. 19 (2009) 591 | DOI

[29] A Putman, Obtaining presentations from group actions without making choices, Algebr. Geom. Topol. 11 (2011) 1737 | DOI

[30] A Putman, The second rational homology group of the moduli space of curves with level structures, Adv. Math. 229 (2012) 1205 | DOI

[31] T Satoh, The abelianization of the congruence IA–automorphism group of a free group, Math. Proc. Cambridge Philos. Soc. 142 (2007) 239 | DOI

[32] T Satoh, A survey of the Johnson homomorphisms of the automorphism groups of free groups and related topics, preprint (2012)

Cité par Sources :