Brown’s moduli spaces of curves and the gravity operad
Geometry & topology, Tome 21 (2017) no. 5, pp. 2811-2850.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

This paper is built on the following observation: the purity of the mixed Hodge structure on the cohomology of Brown’s moduli spaces is essentially equivalent to the freeness of the dihedral operad underlying the gravity operad. We prove these two facts by relying on both the geometric and the algebraic aspects of the problem: the complete geometric description of the cohomology of Brown’s moduli spaces and the coradical filtration of cofree cooperads. This gives a conceptual proof of an identity of Bergström and Brown which expresses the Betti numbers of Brown’s moduli spaces via the inversion of a generating series. This also generalizes the Salvatore–Tauraso theorem on the nonsymmetric Lie operad.

DOI : 10.2140/gt.2017.21.2811
Classification : 14H10, 14C30, 18D50
Keywords: moduli spaces of genus zero curves, operads, mixed Hodge structures

Dupont, Clément 1 ; Vallette, Bruno 2

1 Institut Montpelliérain Alexander Grothendieck, Université de Montpellier, Place Eugène Bataillon, 34090 Montpellier, France
2 Laboratoire Analyse, Géométrie et Applications, Université Paris 13, Sorbonne Paris Cité, CNRS, UMR 7539, 93430 Villetaneuse, France
@article{GT_2017_21_5_a4,
     author = {Dupont, Cl\'ement and Vallette, Bruno},
     title = {Brown{\textquoteright}s moduli spaces of curves and the gravity operad},
     journal = {Geometry & topology},
     pages = {2811--2850},
     publisher = {mathdoc},
     volume = {21},
     number = {5},
     year = {2017},
     doi = {10.2140/gt.2017.21.2811},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2017.21.2811/}
}
TY  - JOUR
AU  - Dupont, Clément
AU  - Vallette, Bruno
TI  - Brown’s moduli spaces of curves and the gravity operad
JO  - Geometry & topology
PY  - 2017
SP  - 2811
EP  - 2850
VL  - 21
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2017.21.2811/
DO  - 10.2140/gt.2017.21.2811
ID  - GT_2017_21_5_a4
ER  - 
%0 Journal Article
%A Dupont, Clément
%A Vallette, Bruno
%T Brown’s moduli spaces of curves and the gravity operad
%J Geometry & topology
%D 2017
%P 2811-2850
%V 21
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2017.21.2811/
%R 10.2140/gt.2017.21.2811
%F GT_2017_21_5_a4
Dupont, Clément; Vallette, Bruno. Brown’s moduli spaces of curves and the gravity operad. Geometry & topology, Tome 21 (2017) no. 5, pp. 2811-2850. doi : 10.2140/gt.2017.21.2811. http://geodesic.mathdoc.fr/articles/10.2140/gt.2017.21.2811/

[1] J Alm, A universal A-infinity structure on Batalin–Vilkovisky algebras with multiple zeta value coefficients, preprint (2015)

[2] J Alm, D Petersen, Brown’s dihedral moduli space and freedom of the gravity operad, preprint (2015)

[3] V I Arnol’D, The cohomology ring of the group of dyed braids, Mat. Zametki 5 (1969) 227

[4] J Bergström, F Brown, Inversion of series and the cohomology of the moduli spaces M0,nδ, from: "Motives, quantum field theory, and pseudodifferential operators" (editors A Carey, D Ellwood, S Paycha, S Rosenberg), Clay Math. Proc. 12, Amer. Math. Soc. (2010) 119

[5] F C S Brown, Multiple zeta values and periods of moduli spaces M0,n, Ann. Sci. Éc. Norm. Supér. 42 (2009) 371 | DOI

[6] P Deligne, Théorie de Hodge, I, from: "Actes du Congrès International des Mathématiciens", Gauthier-Villars (1971) 425

[7] P Deligne, Théorie de Hodge, II, Inst. Hautes Études Sci. Publ. Math. 40 (1971) 5 | DOI

[8] P Deligne, Théorie de Hodge, III, Inst. Hautes Études Sci. Publ. Math. 44 (1974) 5 | DOI

[9] S L Devadoss, Tessellations of moduli spaces and the mosaic operad, from: "Homotopy invariant algebraic structures" (editors J P Meyer, J Morava, W S Wilson), Contemp. Math. 239, Amer. Math. Soc. (1999) 91 | DOI

[10] V Dotsenko, Freeness theorems for operads via Gröbner bases, from: "Operads 2009" (editors J L Loday, B Vallette), Sémin. Congr. 26, Soc. Math. France (2013) 61

[11] V Dotsenko, A Khoroshkin, Gröbner bases for operads, Duke Math. J. 153 (2010) 363 | DOI

[12] C Dupont, Purity, formality, and arrangement complements, Int. Math. Res. Not. 2016 (2016) 4132 | DOI

[13] E Getzler, Two-dimensional topological gravity and equivariant cohomology, Comm. Math. Phys. 163 (1994) 473

[14] E Getzler, Operads and moduli spaces of genus 0 Riemann surfaces, from: "The moduli space of curves" (editors R Dijkgraaf, C Faber, G van der Geer), Progr. Math. 129, Birkhäuser (1995) 199 | DOI

[15] E Getzler, M M Kapranov, Cyclic operads and cyclic homology, from: "Geometry, topology, physics" (editor S T Yau), Conf. Proc. Lecture Notes Geom. Topology IV, Int. Press (1995) 167

[16] V Ginzburg, M Kapranov, Koszul duality for operads, Duke Math. J. 76 (1994) 203 | DOI

[17] A B Goncharov, Y I Manin, Multiple ζ–motives and moduli spaces M0,n, Compos. Math. 140 (2004) 1 | DOI

[18] S Keel, Intersection theory of moduli space of stable n–pointed curves of genus zero, Trans. Amer. Math. Soc. 330 (1992) 545 | DOI

[19] M Kim, Weights in cohomology groups arising from hyperplane arrangements, Proc. Amer. Math. Soc. 120 (1994) 697 | DOI

[20] F F Knudsen, The projectivity of the moduli space of stable curves, II : The stacks Mg,n, Math. Scand. 52 (1983) 161 | DOI

[21] G I Lehrer, The l–adic cohomology of hyperplane complements, Bull. London Math. Soc. 24 (1992) 76 | DOI

[22] J L Loday, B Vallette, Algebraic operads, 346, Springer (2012) | DOI

[23] C A M Peters, J H M Steenbrink, Mixed Hodge structures, 52, Springer (2008) | DOI

[24] D Quillen, Rational homotopy theory, Ann. of Math. 90 (1969) 205 | DOI

[25] M Saito, Modules de Hodge polarisables, Publ. Res. Inst. Math. Sci. 24 (1988) 849 | DOI

[26] P Salvatore, R Tauraso, The operad Lie is free, J. Pure Appl. Algebra 213 (2009) 224 | DOI

[27] B Z Shapiro, The mixed Hodge structure of the complement to an arbitrary arrangement of affine complex hyperplanes is pure, Proc. Amer. Math. Soc. 117 (1993) 931 | DOI

Cité par Sources :