Smooth Kuranishi atlases with isotropy
Geometry & topology, Tome 21 (2017) no. 5, pp. 2725-2809.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

Kuranishi structures were introduced in the 1990s by Fukaya and Ono for the purpose of assigning a virtual cycle to moduli spaces of pseudoholomorphic curves that cannot be regularized by geometric methods. Their core idea was to build such a cycle by patching local finite-dimensional reductions, given by smooth sections that are equivariant under a finite isotropy group.

Building on our notions of topological Kuranishi atlases and perturbation constructions in the case of trivial isotropy, we develop a theory of Kuranishi atlases and cobordisms that transparently resolves the challenges posed by nontrivial isotropy. We assign to a cobordism class of weak Kuranishi atlases both a virtual moduli cycle (a cobordism class of weighted branched manifolds) and a virtual fundamental class (a Čech homology class).

DOI : 10.2140/gt.2017.21.2725
Classification : 53D35, 53D45, 54B15, 57R17, 57R95
Keywords: virtual fundamental cycle, virtual fundamental class, pseudoholomorphic curve, Kuranishi structure, Gromov–Witten invariant, transversality, weighted branched manifold

McDuff, Dusa 1 ; Wehrheim, Katrin 2

1 Mathematics Department, Barnard College, Columbia University, MC4410, 2990 Broadway, New York, NY 10027-6840, United States
2 Department of Mathematics, University of California, Berkeley, 907 Evans Hall #3840, Berkeley, CA 94705-3840, United States
@article{GT_2017_21_5_a3,
     author = {McDuff, Dusa and Wehrheim, Katrin},
     title = {Smooth {Kuranishi} atlases with isotropy},
     journal = {Geometry & topology},
     pages = {2725--2809},
     publisher = {mathdoc},
     volume = {21},
     number = {5},
     year = {2017},
     doi = {10.2140/gt.2017.21.2725},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2017.21.2725/}
}
TY  - JOUR
AU  - McDuff, Dusa
AU  - Wehrheim, Katrin
TI  - Smooth Kuranishi atlases with isotropy
JO  - Geometry & topology
PY  - 2017
SP  - 2725
EP  - 2809
VL  - 21
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2017.21.2725/
DO  - 10.2140/gt.2017.21.2725
ID  - GT_2017_21_5_a3
ER  - 
%0 Journal Article
%A McDuff, Dusa
%A Wehrheim, Katrin
%T Smooth Kuranishi atlases with isotropy
%J Geometry & topology
%D 2017
%P 2725-2809
%V 21
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2017.21.2725/
%R 10.2140/gt.2017.21.2725
%F GT_2017_21_5_a3
McDuff, Dusa; Wehrheim, Katrin. Smooth Kuranishi atlases with isotropy. Geometry & topology, Tome 21 (2017) no. 5, pp. 2725-2809. doi : 10.2140/gt.2017.21.2725. http://geodesic.mathdoc.fr/articles/10.2140/gt.2017.21.2725/

[1] N Bourbaki, General topology : Chapters 1–4, Springer (1989)

[2] R Castellano, Genus zero Gromov–Witten axioms via Kuranishi atlases, preprint (2016)

[3] K Fukaya, Y G Oh, H Ohta, K Ono, Lagrangian intersection Floer theory : anomaly and obstruction, II, 46, Amer. Math. Soc. (2009)

[4] K Fukaya, Y G Oh, H Ohta, K Ono, Technical details on Kuranishi structure and virtual fundamental chain, preprint (2012)

[5] K Fukaya, Y G Oh, H Ohta, K Ono, Kuranishi structure, pseudoholomorphic curve, and virtual fundamental chain, I, preprint (2015)

[6] K Fukaya, K Ono, Arnold conjecture and Gromov–Witten invariant, Topology 38 (1999) 933 | DOI

[7] H Hofer, K Wysocki, E Zehnder, A general Fredholm theory, II : Implicit function theorems, Geom. Funct. Anal. 19 (2009) 206 | DOI

[8] D Mcduff, Groupoids, branched manifolds and multisections, J. Symplectic Geom. 4 (2006) 259

[9] D Mcduff, Smooth Kuranishi atlases, lecture slides (2013)

[10] D Mcduff, Notes on Kuranishi atlases, preprint (2014)

[11] D Mcduff, Strict orbifold atlases and weighted branched manifolds, preprint (2015)

[12] D Mcduff, K Wehrheim, Smooth Kuranishi atlases with trivial isotropy, preprint (2012)

[13] D Mcduff, K Wehrheim, The topology of Kuranishi atlases, preprint (2015)

[14] D Mcduff, K Wehrheim, The fundamental class of smooth Kuranishi atlases with trivial isotropy, J. Topol. Anal. (2016) | DOI

[15] J R Munkres, Topology, Prentice Hall (2000)

[16] J Pardon, An algebraic approach to virtual fundamental cycles on moduli spaces of pseudoholomorphic curves, Geom. Topol. 20 (2016) 779 | DOI

[17] A Weinstein, The volume of a differentiable stack, Lett. Math. Phys. 90 (2009) 353 | DOI

Cité par Sources :