Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We prove a new symplectic analogue of Kashiwara’s equivalence from –module theory. As a consequence, we establish a structure theory for module categories over deformation-quantizations that mirrors, at a higher categorical level, the Białynicki-Birula stratification of a variety with an action of the multiplicative group . The resulting categorical cell decomposition provides an algebrogeometric parallel to the structure of Fukaya categories of Weinstein manifolds. From it, we derive concrete consequences for invariants such as –theory and Hochschild homology of module categories of interest in geometric representation theory.
Bellamy, Gwyn 1 ; Dodd, Christopher 2 ; McGerty, Kevin 3 ; Nevins, Thomas 2
@article{GT_2017_21_5_a1, author = {Bellamy, Gwyn and Dodd, Christopher and McGerty, Kevin and Nevins, Thomas}, title = {Categorical cell decomposition of quantized symplectic algebraic varieties}, journal = {Geometry & topology}, pages = {2601--2681}, publisher = {mathdoc}, volume = {21}, number = {5}, year = {2017}, doi = {10.2140/gt.2017.21.2601}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2017.21.2601/} }
TY - JOUR AU - Bellamy, Gwyn AU - Dodd, Christopher AU - McGerty, Kevin AU - Nevins, Thomas TI - Categorical cell decomposition of quantized symplectic algebraic varieties JO - Geometry & topology PY - 2017 SP - 2601 EP - 2681 VL - 21 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2017.21.2601/ DO - 10.2140/gt.2017.21.2601 ID - GT_2017_21_5_a1 ER -
%0 Journal Article %A Bellamy, Gwyn %A Dodd, Christopher %A McGerty, Kevin %A Nevins, Thomas %T Categorical cell decomposition of quantized symplectic algebraic varieties %J Geometry & topology %D 2017 %P 2601-2681 %V 21 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.2140/gt.2017.21.2601/ %R 10.2140/gt.2017.21.2601 %F GT_2017_21_5_a1
Bellamy, Gwyn; Dodd, Christopher; McGerty, Kevin; Nevins, Thomas. Categorical cell decomposition of quantized symplectic algebraic varieties. Geometry & topology, Tome 21 (2017) no. 5, pp. 2601-2681. doi : 10.2140/gt.2017.21.2601. http://geodesic.mathdoc.fr/articles/10.2140/gt.2017.21.2601/
[1] On irreducible representations of compact p–adic analytic groups, Ann. of Math. 178 (2013) 453 | DOI
, ,[2] Algebraic approximation of structures over complete local rings, Inst. Hautes Études Sci. Publ. Math. 36 (1969) 23
,[3] A proof of Jantzen conjectures, from: "I M Gel’fand seminar" (editor S Gindikin), Adv. Soviet Math. 16, Amer. Math. Soc. (1993) 1
, ,[4] Lagrangian skeleta and Koszul duality on bionic symplectic varieties, in preparation
, , , ,[5] On deformation quantizations of hypertoric varieties, Pacific J. Math. 260 (2012) 89 | DOI
, ,[6] D–modules arithmétiques, I : Opérateurs différentiels de niveau fini, Ann. Sci. École Norm. Sup. 29 (1996) 185
,[7] Fedosov quantization in algebraic context, Mosc. Math. J. 4 (2004) 559
, ,[8] McKay equivalence for symplectic resolutions of quotient singularities, Tr. Mat. Inst. Steklova 246 (2004) 20
, ,[9] Etingof conjecture for quantized quiver varieties, preprint (2013)
, ,[10] Some theorems on actions of algebraic groups, Ann. of Math. 98 (1973) 480 | DOI
,[11] Some properties of the decompositions of algebraic varieties determined by actions of a torus, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 24 (1976) 667
,[12] Quantizations of conical symplectic resolutions, II : Category O and symplectic duality, preprint (2014)
, , , ,[13] Quantizations of conical symplectic resolutions, I: Local and global structure, preprint (2012)
, , ,[14] Representation theory and complex geometry, Birkhäuser (1997) | DOI
, ,[15] On quantization of complex symplectic manifolds, Comm. Math. Phys. 308 (2011) 81 | DOI
, ,[16] Deformation quantization of complex involutive submanifolds, from: "Noncommutative geometry and physics" (editors Y Maeda, N Tose, N Miyazaki, S Watamura, D Sternheimer), World Sci. (2005) 127 | DOI
, ,[17] Quantization of complex Lagrangian submanifolds, Adv. Math. 213 (2007) 358 | DOI
, ,[18] A localization theorem for finite W–algebras, preprint (2009)
, ,[19] The Van den Bergh duality and the modular symmetry of a Poisson variety, Selecta Math. 14 (2009) 199 | DOI
,[20] Poisson structures and their normal forms, 242, Birkhäuser (2005) | DOI
, ,[21] Commutative algebra: with a view toward algebraic geometry, 150, Springer (1995) | DOI
,[22] Symplectic reflection algebras, Calogero–Moser space, and deformed Harish-Chandra homomorphism, Invent. Math. 147 (2002) 243 | DOI
, ,[23] Borel subgroups adapted to nilpotent elements of standard Levi type, Represent. Theory 18 (2014) 341 | DOI
,[24] Characteristic varieties and vanishing cycles, Invent. Math. 84 (1986) 327 | DOI
,[25] Harish-Chandra bimodules for quantized Slodowy slices, Represent. Theory 13 (2009) 236 | DOI
,[26] On category O for cyclotomic rational Cherednik algebras, J. Eur. Math. Soc. 16 (2014) 1017 | DOI
, ,[27] The Auslander–Gorenstein property for Z–algebras, J. Algebra 399 (2014) 102 | DOI
, ,[28] Eléments de géométrie algébrique, III : Étude cohomologique des faisceaux cohérents, I, Inst. Hautes Études Sci. Publ. Math. 11 (1961) 5
,[29] Symplectic techniques in physics, Cambridge University Press (1990)
, ,[30] On the De Rham cohomology of algebraic varieties, Inst. Hautes Études Sci. Publ. Math. 45 (1975) 5
,[31] Algebraic geometry, 52, Springer (1977) | DOI
,[32] D–modules, perverse sheaves, and representation theory, 236, Birkhäuser (2008) | DOI
, , ,[33] Formal deformations and their categorical general fibre, Comment. Math. Helv. 86 (2011) 41 | DOI
, , ,[34] Complexe cotangent et déformations, I, 239, Springer (1971) | DOI
,[35] Derived equivalences by quantization, Geom. Funct. Anal. 17 (2008) 1968 | DOI
,[36] Highest weights for truncated shifted Yangians and product monomial crystals, preprint (2015)
, , , , ,[37] Yangians and quantizations of slices in the affine Grassmannian, Algebra Number Theory 8 (2014) 857 | DOI
, , , ,[38] On DG-modules over the de Rham complex and the vanishing cycles functor, from: "Algebraic geometry" (editors S Bloch, I Dolgachev, W Fulton), Lecture Notes in Math. 1479, Springer (1991) 57 | DOI
,[39] Quantization of contact manifolds, Publ. Res. Inst. Math. Sci. 32 (1996) 1 | DOI
,[40] Microlocalization of rational Cherednik algebras, Duke Math. J. 144 (2008) 525 | DOI
, ,[41] Categories and sheaves, 332, Springer (2006) | DOI
, ,[42] Deformation quantization modules, 345, Soc. Math. France (2012)
, ,[43] On the cyclic homology of ringed spaces and schemes, Doc. Math. 3 (1998) 231
,[44] On the cyclic homology of exact categories, J. Pure Appl. Algebra 136 (1999) 1 | DOI
,[45] Weyl groups of Hamiltonian manifolds, I, preprint (1997)
,[46] Loewy series of Weyl modules and the Poincaré polynomials of quiver varieties, Publ. Res. Inst. Math. Sci. 48 (2012) 477 | DOI
, ,[47] Quantized symplectic actions and W–algebras, J. Amer. Math. Soc. 23 (2010) 35 | DOI
,[48] Finite-dimensional representations of W–algebras, Duke Math. J. 159 (2011) 99 | DOI
,[49] Isomorphisms of quantizations via quantization of resolutions, Adv. Math. 231 (2012) 1216 | DOI
,[50] Etingof conjecture for quantized quiver varieties, II: Affine quivers, preprint (2014)
,[51] On categories O for quantized symplectic resolutions, preprint (2015)
,[52] Noncommutative Noetherian rings, 30, Amer. Math. Soc. (2001) | DOI
, ,[53] Derived equivalence for quantum symplectic resolutions, Selecta Math. 20 (2014) 675 | DOI
, ,[54] Kirwan surjectivity for quiver varieties, preprint (2016)
, ,[55] Fukaya categories as categorical Morse homology, Symmetry Integrability Geom. Methods Appl. 10 (2014) | DOI
,[56] Lectures on Hilbert schemes of points on surfaces, 18, Amer. Math. Soc. (1999) | DOI
,[57] Instanton counting on blowup, I : 4–dimensional pure gauge theory, Invent. Math. 162 (2005) 313 | DOI
, ,[58] The connection between the K–theory localization theorem of Thomason, Trobaugh and Yao and the smashing subcategories of Bousfield and Ravenel, Ann. Sci. École Norm. Sup. 25 (1992) 547
,[59] The Grothendieck duality theorem via Bousfield’s techniques and Brown representability, J. Amer. Math. Soc. 9 (1996) 205 | DOI
,[60] Deformations of symplectic Lie algebroids, deformations of holomorphic symplectic structures, and index theorems, Asian J. Math. 5 (2001) 599 | DOI
, ,[61] Remarks on modules over deformation quantization algebras, Mosc. Math. J. 4 (2004) 911
, ,[62] The higher K–theory of a complex surface, Compositio Math. 129 (2001) 239 | DOI
, ,[63] DG affinity of DQ-modules, Int. Math. Res. Not. 2012 (2012) 1414 | DOI
,[64] Special transverse slices and their enveloping algebras, Adv. Math. 170 (2002) 1 | DOI
,[65] Higher algebraic K–theory, I, from: "Algebraic –theory, I: Higher –theories" (editor H Bass), Lecture Notes in Math. 341, Springer (1973) 85 | DOI
,[66] The Hochschild cohomology ring of regular maximal primitive quotients of enveloping algebras of semisimple Lie algebras, Ann. Sci. École Norm. Sup. 29 (1996) 535
,[67] A relation between Hochschild homology and cohomology for Gorenstein rings, Proc. Amer. Math. Soc. 126 (1998) 1345 | DOI
,[68] A microstructure sheaf and quantum sections over a projective scheme, J. Algebra 158 (1993) 201 | DOI
, ,[69] Centers of KLR algebras and cohomology rings of quiver varieties, preprint (2015)
,[70] Cyclic homology of differential operators, Duke Math. J. 54 (1987) 641 | DOI
,[71] On flatness and completion for infinitely generated modules over Noetherian rings, Comm. Algebra 39 (2011) 4221 | DOI
,Cité par Sources :